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Networks studied in many disciplines, including neuroscience and mathematical biology, have connectivity that
may be stochastic about some underlying mean connectivity represented by a non-normal matrix. Furthermore,
the stochasticity may not be independent and identically distributed (iid) across elements of the connectivity
matrix. More generally, the problem of understanding the behavior of stochastic matrices with nontrivial mean
structure and correlations arises in many settings. We address this by characterizing large random N x N matrices
of the form A = M + LJ R, where M, L, and R are arbitrary deterministic matrices and J is a random matrix of
zero-mean iid elements. M can be non-normal, and L and R allow correlations that have separable dependence
on row and column indices. We first provide a general formula for the eigenvalue density of A. For A non-normal,
the eigenvalues do not suffice to specify the dynamics induced by A, so we also provide general formulas for
the transient evolution of the magnitude of activity and frequency power spectrum in an N-dimensional linear
dynamical system with a coupling matrix given by A. These quantities can also be thought of as characterizing
the stability and the magnitude of the linear response of a nonlinear network to small perturbations about a fixed
point. We derive these formulas and work them out analytically for some examples of M, L, and R motivated by
neurobiological models. We also argue that the persistence as N — oo of a finite number of randomly distributed
outlying eigenvalues outside the support of the eigenvalue density of A, as previously observed, arises in regions
of the complex plane £ where there are nonzero singular values of L~'(z1 — M)R™! (for z € Q) that vanish as
N — oo. When such singular values do not exist and L and R are equal to the identity, there is a correspondence
in the normalized Frobenius norm (but not in the operator norm) between the support of the spectrum of A for J

of norm o and the ¢ pseudospectrum of M.
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1. INTRODUCTION

Knowledge of the statistics of eigenvalues and eigenvectors
of random matrices has applications in the modeling of
phenomena relevant to a wide range of disciplines [1-3]. In
many applications, however, the matrices of interest are not
entirely random, but feature substantial deterministic structure.
Furthermore, this structure, as well as the disorder on top of
it, are, in general, described by non-normal matrices.

In neuroscience, for example, connections between neurons
typically have restricted spatial range and show specificity with
respect to neuronal type, location, and response properties.
Experience-based synaptic plasticity, which underlies learning
and memory, naturally gives rise to synaptic connectivity
matrices that encode aspects of the statistical structure of the
sensory environment, while containing significant randomness
partly due to the inherent stochasticity of particular histories
of sensory experience. Another simple example of structured
neural connectivity is due to what is known as Dale’s principle
[4-6]: Neurons come in two main types, excitatory and
inhibitory. This empirical principle imposes a certain structure
on the synaptic connectivity matrix, forcing all elements in
each column of the matrix, describing the synaptic projections
of a certain neuron, to have the same sign. Particularly
when the typical weight magnitude is much larger than
typical differences between the magnitudes of excitatory
and inhibitory weights, such a matrix can be extremely
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non-normal by some measures, much more so than a fully
random matrix [7]. Similarly, biological knowledge imparts
a great deal of structure to models of biochemical [8—11]
or ecological networks [12—16], and matrices characterizing
such interactions are typically non-normal. Yet our knowledge
of connectivity or interactions is, at best, probabilistic. To
describe realistic biological behavior, we must generalize from
the behavior of a fixed, regular connectivity to the expected
behavior of a typical sample from an appropriate connectivity
ensemble.

Furthermore, non-normality can lead to important dynam-
ical properties not seen for normal matrices [17]. In general,
networks with a recurrent connectivity pattern described by
a non-normal matrix can be described as having a hid-
den feedforward connectivity structure between orthogonal
activity patterns, each of which can also excite or inhibit
itself [7,18,19]. In neural networks such hidden feedforward
connectivity arises from the natural separation of excitatory
and inhibitory neurons, yielding so-called “balanced am-
plification” of patterns of activity without any dynamical
slowing [7]. Underlying this is the phenomenon of “transient
amplification”: a small perturbation from a fixed point of a
stable system with non-normal connectivity can lead to a large
transient response over finite time [17]. Transient amplifi-
cation also yields unexpected results in ecological networks
[20-22] and has been conjectured to play a key role in many
biochemical systems [23]. Networks that yield long hidden
feedforward chains can also generate long time scales and
provide a substrate for working memory [18,19]. Systems with
non-normal connectivity can also exhibit pseudoresonance
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frequencies in their power spectrum at which the system
responds strongly to external inputs, even though the external
frequency is not close to any of the system’s natural frequencies
as determined by its eigenvalues [17].

While Hermitian random matrices and fully random non-
Hermitian matrices with zero-mean, independent and identi-
cally distributed (iid) elements have been widely studied, there
is a shortage of results on quantities of interest for non-normal
matrices that fall between the two extremes of fully random or
fully deterministic. A natural departure from a non-normal
deterministic structure, described by a connectivity matrix
M, is to additively perturb it with a fully random matrix J
with zero-mean, iid elements. In many important examples,
however, the strength of disorder (deviations from the mean
structure) is not uniform and itself has some structure (e.g., for
each connection it can depend on the types of the connected
nodes or neurons). Moreover, the deviations of the strength
of different connections or interactions from their average
need not be independent. Hence, it is important to move
beyond a simple iid deviation from the mean structure. Here
we study ensembles of large N x N random matrices of the
form A = M + LJ R, where M, L, and R are arbitrary (M) or
arbitrary invertible (L and R) deterministic matrices that are, in
general, non-normal, and J is a completely random matrix with
zero-mean iid elements of variance 1/N. The matrix M is thus
the average of A and describes average connectivity. Note that
when L and R are diagonal, they specify variances that depend
separably on the row and column of A, while when they are not
diagonal, the elements of A are not statistically independent.
As we show in Sec. IIC3, this form arises naturally, for
example, in linearizations of dynamical systems involving
simple classes of nonlinearities. This type of ensemble is
also natural from the random matrix theory viewpoint, as it
describes a classical fully random ensemble—an iid random
matrix J—modified by the two basic algebraic operations of
matrix multiplication and addition.

We study the eigenvalue distribution of such matrices,
but also directly study the dynamics of a linear system of
differential equations governed by such matrices. Specifically,
for matrices of the above type, using the Feynman diagram
technique in the large N limit (we follow the particular version
of this method developed by Refs. [24,25]), we have derived a
general formula for the density of their eigenvalues in the
complex plane, which generalizes the well-known circular
law for fully random matrices [26-30]. It also generalizes
a result [31] obtained for the case where L and R are scalar
multiples of 1, the N-dimensional identity matrix (the same
result was obtained in [32] using the methods and language of
free probability theory; the eigenvalue density for the case
L xR x1 and a normal M was also calculated in Ref.
[24] in the limit N — oo, and that result was extended to
finite N in Ref. [33]). Apart from generalization to arbitrary
invertible L and R, we also provide a correct regularizing
procedure for finding the support of the eigenvalue density
in the limit N — oo in certain highly non-normal cases of
M; the naive interpretation of the formulas fails in these
cases, which were not previously discussed. Furthermore,
with the aim of studying dynamical signatures of non-normal
connectivity, we focused on the dynamics directly, deriving
general formulas for the magnitude of the response of the

PHYSICAL REVIEW E 91, 012820 (2015)

system to a § function pulse of input (which provides a measure
of the time course of potential transient amplification), as well
as the frequency power spectrum of the system’s response to
external time-dependent inputs.

These general results are presented in the next section.
There we also present the explicit results of analytical or
numerical calculations based on these general formulas for
some specific examples of M, L, and R. Sections III and IV
contain the detailed derivations of our general formulas for
the eigenvalue density and the response magnitude formulas,
respectively. Section V contains the detailed analytical calcu-
lations of these quantities for the specific examples presented
in Sec. II, based on the general formulas. We conclude the
paper in Sec. VL.

2. SUMMARY OF RESULTS

We study ensembles of large N x N random matrices of
the form

A=M+LJR, 2.1)

where M, L, and R are arbitrary (M) or arbitrary invertible
(L and R) deterministic matrices [34] and J is arandom matrix
of iid elements with zero mean and variance 1/N. Since J and
therefore LJ R have zero mean, M is the ensemble average
of A. The random fluctuations of A around its average are
given by the matrix LJ R, which for general L and/or R has
dependent and nonidentically distributed elements, due to the
possible mixing and nonuniform scaling of the rows (columns)
of the iid J by L (R).

We are first interested in the statistics of the eigenvalues
of Eq. (2.1). While the statistics of the eigenvalues and
eigenvectors of A are of interest in their own right, we also
directly consider certain properties of the linear dynamical
system,

dx(t)
dt

for an N-dimensional state vector x(#), when A is a sample
of the ensemble Eq. (2.1). Here y is a scalar and I(¢) is an
external, time-dependent input. In studying this system, we
generally assume that Eq. (2.2) is asymptotically stable. This
means that M, L, R, and y must be chosen such that for any
typical realization of J, no eigenvalue of —y1+ M + LJR
has a positive real part; this can normally be achieved, for
example, by choosing a large enough y > 0.

Using the diagrammatic technique in the noncrossing
approximation, which is valid for large N, we have derived
general formulas for several useful properties of such matrices
involving their eigenvalues and eigenvectors (see Secs. III-IV
for the details of the derivations and the definition of the
noncrossing approximation). We present these results in this
section. In our derivation of these results, we assume the
random J belongs to the complex Ginibre ensemble [26],
i.e., the distribution of the elements of J is complex Gaussian.
However, we emphasize that universality theorems ensure that,
for given M, L, and R, the obtained result for the eigenvalue
density in the limit N — oo will not depend on the exact
choice of the distribution of the elements of J, beyond its first
two moments, and extend to any iid J (including, e.g., J with

= —yx(t) + Ax(t) + I(¢), (22)
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real binary or log-normal elements) whose elements have the
same first two moments, i.e., zero mean and variance 1/N; the
universality of the eigenvalue density for general M, L, and
R was established in Ref. [35], following earlier work on the
universality of the circular law established and successively
strengthened in Refs. [26-30]. Furthermore, empirically, from
limited simulations, we have thus far found (but have not
proved) such universal behavior to also hold for the other
quantities we compute here (however, it is possible that
universality for these quantities might require the existence
of some higher moments beyond the second, as has been
found for universality of certain other properties of random
matrices; see, e.g., Ref. [36]). To demonstrate the universality
of our results, we have used non-Gaussian and/or real J’s in
most of the numerical examples below.

Hereinafter, we adopt the following notations. For any
matrix B, we denote its operator norm (its maximum singular
value) by || B|| and we define its (normalized) Frobenius norm
via

1 1 .
18Iz =+ 2 1Bijl* = - Tr (BB (2.3)
ij

(equivalently, || B||. is the root mean square of the singular
values of B).
For general matrices, A and B,

1
tr(A) = —Tr(A), A~ T=@AH,
N
1 o, A »
—=A"", —=AB"",
A B

and when adding a scalar to a matrix, it is implied that the scalar
is multiplied by the appropriate identity matrix. We denote the
identity matrix in any dimension (deduced from the context)
by 1. For a complex variable z = x 4+ iy, the Dirac § function
is defined by 6%(z) = 8(x)8(y), and we define 9: = 9/97 =
(0/0x +1i9/dy)/2 and 9, = 3/dz = (3/dx —id/dy)/2. For
simplicity, we use the notation f(z) [instead of f(z,Z)] for
general, nonholomorphic functions on the complex plane. We
say a quantity is O(f(N)) [®(f(N))] when, for large enough
N, the absolute value of that quantity is bounded above [above
and below] by a fixed positive multiple of | f(N)|. Finally, we
say a quantity is o( f(N)) when its ratio to | f(N)| vanishes as
N — oo.

The only conditions we impose on M, L, and R are
that ||M |l LI, IRl 1L MRl and (LR)™| are
bounded as N — oco. We use the bound on |[(LR)™'| in
Appendixes A and B; the Frobenius norm conditions are
assumptions in the universality theorem of Ref. [35], which
we use as discussed above. Finally, we assume that for all
z € C, the distribution of the eigenvalues of M, MI , where M,
is defined below in Eq. (2.6), tends to a limit distribution
as N — oo. This last condition simply makes precise the
requirement that M, L, and R are defined consistently as
functions of N, such that a limit spectral density for M + LJ R
is meaningful; in particular, it does not impose any further
limits on the growth of the eigenvalues of MZMJ with N,
beyond the various norm bounds imposed above.

PHYSICAL REVIEW E 91, 012820 (2015)

A. Spectral density
1. Summary of results
The density of the eigenvalues of M + L J R in the complex
plane for a realization of J (also known as the empirical
spectral distribution) is defined by

1
P2 = Z 82(z = ha)s (2.4)

where A, are the eigenvalues of M + LJR. It is known [35]
that p,(z) is asymptotically self-averaging, in the sense that
with probability one p;(z) — p(z) converges to zero (in the
distributional sense) as N — oo, where p(z) = (p;(z)), is
the ensemble average of p,(z). Thus, for large enough N, any
typical realization of J yields an eigenvalue density p;(z) that
is arbitrarily close to p(z).

Our general result is that, for large N, with certain
cautions and excluding certain special cases as described below
[Egs. (2.19) and (2.20) and preceding discussion], p(z) is
nonzero in the region of the complex plane satisfying

w[(MMDH > 1, 25)

where we defined
M.=L"z—MR". (2.6)
Using the definition Eq. (2.3), we can also express Eq. (2.5) as

1

H R Ll >1. 2.7
z—M .
Inside this region, p(z) is given by
19 RL)"'M!
PP ey LY L )
T | MM+ g(2)?

where g(z) is a real, scalar function found by solving

1
tr P =1,
M _M; + g*

for g for each z. As a first example, for the well-known case
of M=0,L =1, and R = o1, we have M, = z/o and the
circular law follows immediately from Eq. (2.5), which yields
02/|z|*> > 1 or |z] < o for the support, and from Eqgs. (2.8)
and (2.9), which yield the uniform p(z) = 1/ (o) within that
support. As we noted in the Introduction, formulas (2.5)—(2.9)
generalize the results of Refs. [31] and [32] for the special case
L « R <1 to arbitrary invertible L and R (the eigenvalue
density for the case L &« R o< 1 and a normal M was also
calculated in Ref. [24]).

It is possible and illuminating to express Egs. (2.7)—-(2.9)
exclusively in terms of the singular values of M, which we
denote by s;(z) [we include possibly vanishing singular values
among s;(z), so that we always have N of them]. First, noting
that the squared singular values of M, are the eigenvalues of

the Hermitian M, M ZT , we can evaluate the trace in Eq. (2.9) in
the eigenbasis of the latter matrix, and rewrite this equation as

(2.9)

! i ! =1 (2.10)
N &~ 5+ ’
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Similarly, Eq. (2.5) can be equivalently rewritten as

1 N
— Y s> 1
N i=1

As we prove at the end of Sec. III, Eq. (2.8) can also be written
in a form that makes it explicit that the dependence of p(z)
on M, L, and R is only through the singular values of M, and
their derivatives with respect to z and z. We have

L1 G s
@)= ;85 {ﬁ Z 5:(2)% + g(2)? } ’

i=1

@2.11)

2.12)

For the special case of M = 0 and general L and R, our
formulas can be simplified considerably. The spectrum is
isotropic around the origin in this case; i.e., p(z) depends only
onr = |z|, and its support is a disk centered at the origin with
radius

L 1/2

_ _ |~ 2
ro=IIRL|, = [N ;a,} , (2.13)
where o; are the singular values of RL [this follows from
Eq. (2.11) by noting that for M = 0, the singular values of
M, = z(RL)™" are s;(z) = |z|/0;]. Within this support the
spectral density is given by

1 2
p(r) = —=—09,[g(r)],

2.14
2rr ( )
where g(r)* > 0 is found by solving
N
1 1
1=— _— 2.15
N ; o722 + g(r)? @15)

Integrating Eq. (2.14), we see that the proportion of eigenval-
ues lying a distance larger than r from the origin is, in this
case, given by

gy (r <),

0 "> ro). (2.16)

n.(r) = {
In Sec. III we prove that the eigenvalue density, given by
Egs. (2.14) and (2.15), is always a decreasing function of
r = |z],1i.e., for r > 0 its derivative with respect to r is strictly
negative, as long as the limit distribution of the {o;} as N — o0
has nonzero variance [otherwise, p(z) is given by the circular
law with radius Eq. (2.13)]. The values of spectral density at
r =0 and r = ry can be calculated explicitly for general L
and R:

11 <
=0)=—— -2 2.17
plr=0)=—— ;:1 o @.17)

-1
1,1 &
p(r =rg) = ;rg |:ﬁ ;054:| <p (r=0). (218

As noted above, certain cautions apply in using the above
formulas for the eigenvalue density and its boundary [(2.5)—
(2.9), or, equivalently, Egs. (2.10)-(2.12), and for M =0,
Egs. (2.14) and (2.15)]. We have written these formulas for
finite N (assuming it is large). However, the noncrossing ap-
proximation used in deriving these formulas is only guaranteed
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to yield the correct result for the eigenvalue density in the limit,
ie., limy_ o p(z) (see Appendix A); finite-size corrections
obtained from Eqgs. (2.5)—(2.9) are not, in general, correct, and
o(1) contributions to g(z)2 or p(z) obtained from Egs. (2.9)
and (2.8) should be discarded.

Furthermore, in general, the correct way of finding the
support of limy_, o p(z) using Eq. (2.5) is by setting the left
side of the inequality (2.5) to lim g2 — 0% lim N — oo of the
left side of Eq. (2.9), as discussed in Sec. III and Appendix A
. However, in writing Eq. (2.5) we have simply set g = 0 in
Eq. (2.9) and thus implicitly taken the limit g> — 0% before
the N — oo limit. To correctly express the support, we must
first define the function

1
K(g,2) = Nlim tr |:—Jr 2:|
- M M; + g
N

1 1
= I — -
Jim 52 L(z)2 +g2}

i=1

(2.19)

for fixed, strictly positive g, which serves to regularize the
denominators in Eq. (2.19) for s; (z) which are zero or vanishing
in the limit N — oo. The generally correct way of expressing
Eq. (2.5) or Eq. (2.11) is then

K0OF,2) = lirg+ K(g,2) = 1. (2.20)
88—
Let us denote the the support of limy_ o p(z), given by
Eq. (2.20), by Sp+ and the region specified by the limit
N — oo of Eq. (2.5) or Eq. (2.11) by Sp. For many examples
of M, L, and R, the limits N — oo and g — 0" commute
everywhere and hence Sy~ = Sy. However, if there are z’s
at which some of the smallest s;(z) are either zero or vanish
in the limit N — oo, the two limits may fail to commute,
and the naive use of Eq. (2.5) can yield a region, Sp,
strictly larger than and containing Sp+, the correct support
of limy_ « p(z). For example, at z’s for which a ®(1) number
of s;(z) are zero or o(1), these singular values do not make a
contribution to (g, z) for g > 0 [their contribution to the sum
in Eq. (2.19) is O(N~1)] and hence to K(0*,z), but if they
vanish sufficiently fast as N — oo they can make a nonzero
contribution to the left side of Eq. (2.11); such z may fall
within Sy, but not within Sy+. For finite N, the s;(z) can
vanish exactly when z coincides with an eigenvalue of M;
thus, the above situation can, e.g., arise close to eigenvalues
of M that are isolated and far from the rest of M’s spectrum,
so that they fall outside the support of limy_, » 0(z). In such
cases, the spectrum of M + LJ R will nonetheless typically
also contain isolated eigenvalues [which do not contribute
to limy_, » p(z)] with effectively deterministic location, i.e.,
within o(1) distance of corresponding isolated eigenvalues of
M, examples of this phenomenon, for which Sy — Sp+ is not
empty but has zero measure, have been studied in Refs. [37,38]
(for symmetric matrices, outlier eigenvalues corresponding
to eigenvalues of the mean matrix were first studied in
Ref. [39]). For some choices of M, L, and R, however, a
more interesting case can arise such that for z in a certain
region of the complex plane with nonzero measure, all s;(z)
are nonzero at finite N (hence, M has no eigenvalue there), but
a few s;(z) are o(1) and vanish sufficiently fast as N — oo;in
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particular, when L o< R o 1, this can occur for certain highly
non-normal M [40]. In such cases, the noncommutation of
the two limits can lead to a difference Sy — S+ with nonzero
measure. In cases we have examined this signifies that there
exists a finite, nonvanishing region outside the support of
limy_, « p(z) (typically surrounding it) where, although p(z)
is o(1), it nonetheless converges to zero sufficiently slowly
that a ®(1) number of “outlier” eigenvalues lie there (note
that the vast majority of eigenvalues, i.e., [1 — o(1)]N of
them, lie within the support of the limit density). We discuss
examples of this phenomenon in Sec. IIC below; in one
of the examples (discussed in Sec. I C2), the existence of
such outlier eigenvalues was first noted in Ref. [41], and
their distribution was quantitatively characterized in Ref. [37].
However, the connection between such outlier eigenvalues and
nonzero but o(1) singular values of M,, which arise, e.g., for
highly non-normal M, were not noted before to the best of our
knowledge.

We have observed in simulations (and also supported by
[37]) that the distribution of these outliers remains random as
N — o0, is, in general, less universal than limy_, o, () (e.g.,
it could depend on the choice of real vs complex ensembles
for J), and has an average behavior that may not be correctly
given by the noncrossing approximation.

2. Relationship to pseudospectra

Finally, we note a remarkable connection between our
general result for the support of the spectrum Eq. (2.5) and
the notion of pseudospectra, in the case in which the limits
g> — 0% and N — oo commute [so that Eq. (2.5) correctly
describes the support]. Pseudospectra are generalizations of
eigenvalue spectra, which are particularly useful in the case
of non-normal matrices (see Ref. [17] for a review). The
eigenvalue spectrum of matrix M can be thought of as the
set of points, z, in the complex plane where (z — M)~ is
singular, i.e., it has infinite norm. Given a fixed choice of
matrix norm, || - ||, the pseudospectrum of M at level o, or its
“o pseudospectrum” in the given norm, is the set of points z
for which ||(z — M)~!|| > o~! (thus, as & — 0 we recover the
spectrum). For the specific choice of the operator norm (i.e.,
when || A|| is taken to be the maximum singular value of A), the
o pseudospectrum can equivalently be characterized as the set
of points, z, for which there exists a matrix perturbation AM,
with ||AM]| < o, such that z is in the eigenvalue spectrum
of M + AM [17,42]. In words, in the operator norm, the o
pseudospectrum of M is the set to which its spectrum can be
perturbed by adding to it arbitrary perturbations of size o or
smaller.

In our setting we can think of LJ R as a perturbation of M.
Let us focus on the case where L and R are proportional to
the identity, i.e., we have AM = o J, with a positive scalar o.
Our result, Eq. (2.7), in this case reads ||o(z — M)~! g =1
or ||(z — M)’1||F > o~ L. In other words, as N — oo, the
spectrum of M + o J, for an iid random J with zero mean
and variance 1/N, is the o pseudospectrum of M in the
normalized Frobenius norm defined by Eq. (2.3). Interestingly,
the perturbation, AM = o J, has normalized Frobenius norm

o as N — oo: This norm is />, Ji?i/N, which, by the

law of large numbers, converges to o for large N. That is, as
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N — o0, the spectrum in response to the random perturbation
o J, which has size o (in normalized Frobenius norm), is the
o pseudospectrum of M in the normalized Frobenius norm.

This result sounds similar to the equivalence of the two
definitions of pseudospectra for the operator norm which
we noted above [one based on the norm of (z — M)~! and
one based on the spectra of bounded perturbations], but it
differs in two key respects. First, unlike in the case of the
operator norm, the general equivalence of the two notions of
pseudospectra noted above does not hold for the normalized
Frobenius norm. Second, for the operator norm, it is not, in
general, the case that the o pseudospectrum of M is equivalent
to the spectrum obtained from a single random perturbation of
M of size o, even in the limit N — oo (although the spectra
arising from such random perturbations are sometimes used as
a “poor man’s version” or approximation of the pseudospectra
[17]). This can be seen as follows. The operator norm of the
random iid perturbation, o J, i.e., its maximum singular value,
converges almost surely to 20 as N — oo [43]. Condition
(2.7) for z to be in the spectrum under this random perturbation
is|(z— M)™! g = o~ ! orrms({s;(z)~'}) > 1 where the s;(z)
are the singular values of % and rms({x; }) represents the root
mean square of the set of values {x;}. This is not equivalent
to the condition that z be in the 20 pseudospectrum of M
in the operator norm, i.e., that ||(z — M)7!|| > 20)~' or
smin(2)71 = 1, where spin(z) is the minimum of the s;(z);
in fact, noting that smin(z)~' > rms({s;(z)~'}), it is easy to
see that the spectrum under random iid perturbations with
operator norm ||o J|| = 20 is strictly a proper subset of the
20 pseudospectrum in the operator norm. For example, for
M =0, the “poor man’s 20 pseudospectrum” in the limit
N — oo is a ball of radius o about the origin (the circular
law), while the true 20 pseudospectra of the zero matrix is the
ball of radius 20" about the origin.

In sum, in the operator norm, the o pseudospectrum
of M for any N is equivalent to the set of points z for
which some perturbation AM with ||AM|| < o can be found
such that z is in the spectrum of M + AM [17]. In the
normalized Frobenius norm in the limit N — oo, however,
the o pseudospectrum of M is equivalent to the spectrum
of M + AM, where AM is any random perturbation with
zero-mean iid elements with | AM||; = o. This statement for
the normalized Frobenius norm holds when the two limits
N — oo and g — 0" commute; when the two limits do not
commute, the support of the spectral distribution of M + AM
is a subset of the o pseudospectrum of M in the normalized
Frobenius norm.

B. Average norm squared and power spectrum

As we mentioned in the Introduction, an important phe-
nomenon encountered in dynamics governed by non-normal
matrices, as described by Eq. (2.2) with I(¢) = 0, is transient
amplification in asymptotically stable systems. In any stable
system, the size of the response to an initial perturbation
eventually decays to zero, with an asymptotic rate set by the
system’s eigenvalues. In stable non-normal systems, however,
after an initial perturbation, the size of the network activity,
as measured, e.g., by its norm squared [|x(¢)]?> = x(¢)"x(¢),
can nonetheless exhibit transient, yet possibly large and
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long-lasting growth, before it eventually decays to zero. By
contrast, in stable normal systems, ||x(¢)||> can only decrease
with time. The strength and even the time scale of transient
amplification are set by properties of the matrix A beyond its
eigenvalues; they depend on the degree of non-normality of the
matrix, as measured, e.g., by the degree of nonorthogonality
of its eigenvectors, or, alternatively, by its hidden feedforward
structure [see Eq. (2.34) for the latter’s definition].

Non-normal systems can also exhibit pseudoresonances
at frequencies that could be very different from their nat-
ural frequencies as determined by their eigenvalues; such
pseudoresonances will be manifested in the frequency power
spectrum of the response of the system to time-dependent
inputs. [|x(#)||> and the power spectrum of response are
examples of quantities that depend not only on the eigenvalues
of M + LJ R but also on its eigenvectors.

Here we present a few closely related formulas for general
M, L, and R. These include a formula for {||x(®)|%);, i.e.,
the ensemble average of the norm squared of the state vector,
x(t), as it evolves under Eq. (2.2) with I() = 0, as well as a
formula for the ensemble average of the power spectrum of the
response of the network to time-varying inputs. The results of
this section are valid, and in the case of the power spectrum
meaningful, when the system Eq. (2.2) is asymptotically stable.
As we mentioned after Eq. (2.2), this means that M, L, R, and
y must be chosen such that for any typical realization of J,
all eigenvalues of —y1+ M + LJ R have negative real part.
In particular, the entire support of the eigenvalue density of
M + LJR, as determined by Eq. (2.5), must fall to the left
of the vertical line of z’s with real part y; this is a necessary
condition, but may not be sufficient either at finite N or in
cases where an O(1) number of eigenvalues remain outside
this region of support even as N — oo.

First, we consider the time evolution of the squared norm,
|Ix(1)||%, of the response of the system to an impulse input,
I(z) = x¢8(¢), at t = 0, before which we assume the system
was in its stable fixed point x = 0 [for # > O this is equivalent
to the squared norm of the activity as it evolves according
to Eq. (2.2) with I(r) = 0, starting from the initial condition
x(0) = x¢]. We provide a formula for the ensemble average of
the more general quadratic function, x(#)" Bx(¢), where B is
any N x N symmetric matrix; the norm squared corresponds
to B = 1. The result for general B, M, L, and R is given as a
double inverse Fourier transform,

(x(1)" Bx(1)x),

dwidw, ; 01— X
— //2—71'12—;6‘[( 2)TI‘ [BC (C{)],a)z;Xng)], (221)

in terms of the N x N Fourier-domain “covariance matrix,”
C¥(w1,w2; X0X)) = <i(a)1)i(a)2)7) ; [where X(w) is the Fourier
transform of x(#)]. The expression for the latter is given by

CXw1,w2; C1) = C(w1,w2; CY) + AC¥ (01,05 CY), (2.22)
where
CXwy,w;CYH = ! C! (2.23)
O y+io—M  y—iw,— Mt ’
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yields the result obtained by ignoring the randomness in the
connectivity (i.e., by setting A = M), and
ACK(w1,02;C)

1 1

= : LL! .
y+io— M y—le—M’r
f 1 1
tr (R R y+iw — C yfiwszi) (2 24)
1 1 :
1 - (RTR +ia)1—MLLT yfiw27MT)

is the contribution of the random part of connectivity LJR.
For later use, we have provided these expressions for a general
third argument in C*(-,-;-); for use in Eq. (2.21) C! must
be substituted with xoxj. In the special case of (Ix))1%)
corresponding to B = 1, and iid disorder (L =1, R = o),
the contributions from Eqgs. (2.23) and (2.24) can be more
compactly combined into

da)] da)z i1(
¢ — PC —wy)
sy, = [[ G52

Oy iw,—MT yFio—M 0

1 —o02 tr(

1 1 (2.25)
y+io—M y—iwz—M"’)

1 T 1 T 1
[we used Tr(ZI_Mxox0 szMT) =Xy

numerator in Eq. (2.25)].

Next we look at the power spectrum of the response of the
system to a noisy input, I(¢), that is temporally white, with
zero mean and covariance

L)1) = 8(t1 — )C}.

Here the bar indicates averaging over the input noise (or by
ergodicity, over a long enough time). Our general result for
the ensemble average of the matrix power spectrum of the
response, which by definition is the Fourier transform of the
steady-state response covariance,

1 .
37 7 X0 to write the

(2.26)

Cliw) = / dr e " x;(t + 1)x;(D), (2.27)
is given by
(CYw)); = Cp(w) + ACH(w). (2.28)
Here we defined
CY(w) = CX(w,w; Ch (2.29)
and
ACX(w) = AC¥(w,w; CY (2.30)

as the power spectrum matrices obtained by ignoring the
randomness in connectivity (i.e., by setting A = M) and the
contribution of quenched randomness L J R, respectively.

A closely related quantity is the total power of the
steady-state response of the system to a sinusoidal input
1) = Io«/z cos wt (the /2 serves to normalize the average
power of v/2 cos w to unity, so that the total power in the input
is ||I[|?). For such an input, the steady-state activity, which
we denote by X, (?), is also sinusoidal (with a possible phase
shift). By total power of the steady-state response we mean
the time average of the squared norm of the activity, ||X,(2)]2,
where now the bar indicates temporal averaging [we call this
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total power, because the squared norm sums the power in all
components of X, (¢)]. As in Eqs. (2.21)—(2.24), we present a
formula for the ensemble average of the more general quantity
X! Bx,. We have

(X, BX,); = Tr[B(C*()),]. (2.31)

where (C*(w)); is given by Egs. (2.28)—(2.30) with C! re-
placed with IpIjj. For the special case of B = 1, corresponding
to the total power of the response at frequency w, using
Egs. (2.23) and (2.24) with w; = w; = w, this formula can
be simplified into

2 2
| 5Ll [R5l

Mo 12 1 z—M
(Ixoll%)s = Z_MIo s (232)
R
where z =y +iw, || - || denotes the vector norm, and || - ||

denotes the Frobenius norm defined in Eq. (2.3). Finally, for
the case that the random part of the matrix is iid, i.e., L = o1
and R = 1, we can further simplify Eq. (2.32) into

Iy +io—M)~'T|?
1 =02y +iow— M2

(B ARYES (2.33)

The stability of the x = 0 fixed point guarantees the positivity
of the expressions Eqgs. (2.32) and (2.33) for the power
spectrum. This is true because, as we noted above, stability
requires that the support of the eigenvalue density of A is
entirely to the left of the vertical line Re(z) = y. By our
result, Eq. (2.7), for that support, this can only be true
if the denominators of the last terms in Egs. (2.32) and
(2.33) are positive, which guarantees the positivity of the full
expressions.

Note that the first term in Eq. (2.32) and the numerator
in Eq. (2.33) represent the power spectrum in the absence of
randomness, i.e., if A in Eq. (2.2) is replaced with M. Thus,
formulas (2.32) and (2.33) show that the correct average power
spectrum is always strictly larger than the naive power spec-
trum obtained by assuming that random effects will “average
out.” Furthermore, due to the denominators of the last terms
in Egs. (2.32) and (2.33), the power spectrum will be larger
for frequencies where the support of the eigenvalue density,
Eq. (2.7), is closer to the vertical line with Re(z) = y. Similar,
but less precise statements can also be made about the strength
of transient amplification using formulas (2.21)—(2.25) for the
squared norm of the impulse response. One measure of the
strength of transient amplification up to time 7 is fOT Ix(1)||%dt.
Integrating formulas Eq. (2.21) (with B =1) or Eq. (2.25)
over t, one obtains formulas for fOT Ix(®)||>dt that are the
same as Eqgs. (2.21)-(2.25), except for the factor e’@1—*2)
in the integrands of Eqs. (2.21) and (2.25) being replaced
with % (with € — 0™). Due to the denominator in
this factor (for T sufficiently large the numerator is constant),
the main contribution to the integrals over w; and w, should
typically arise for @; & w,. On the other hand, note that for
w| = w; the denominators in Eqgs. (2.24) and (2.25) reduce
to the those in Egs. (2.32) and (2.33), with the connection
to the support of the spectral density noted above. Thus,
this dominant contribution to fOT [x(1)||>dt must be larger,
the closer the support of the eigenvalue density, Eq. (2.7),
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FIG. 1. (Color online) (Top) The total power spectrum of steady-
state response ||x,,||? as a function of input frequency w, Eq. (2.33),
for the system Eq. (2.2) with A = M + o J and M given by Eq. (2.35)
with w = 1 and A, = i (with +i and —i alternating), respectively.
Here N = 700, 0 = 0.5, and y = 0.8. The input was fed into the last
component of X [the beginning of the feedforward chain characterized
by Eq. (2.35)], which for the matrix M has natural frequency —1. That
is, the input was IO«/E cos wt, where I was 1 for the last component
and O for all other components. The green (thick dashed) curve is the
ensemble average of the total power spectrum, (||X,,||?);, calculated
numerically using the general formula Eq. (2.33), which is compared
with an empirical average over 100 realizations of real Gaussian
J (solid red line, mostly covered by the dashed green line). The
pink (light gray) area shows the standard deviation among these 100
realizations around this average. The blue (thin) line shows the result
when disorder, o J, is ignored, i.e., A is replaced with its ensemble
average M. (Bottom) The eigenvalue spectrum of M + o J (black
dots). Red big dots at +i show the eigenvalues of M. The red curve
is the outer boundary of the eigenvalue spectrum of A as computed
numerically using Eq. (2.5). The real and imaginary axes of the
complex plane are interchanged, so that the frequency axis in the top
panel can be matched with the imaginary part of the eigenvalues, i.e.,
the natural frequencies of Eq. (2.2).

is to the vertical line with Re(z) = y. This also suggests
that, as in the case of the power spectrum, the strength of
transient amplification would typically be underestimated if
randomness of connectivity is ignored and only its ensemble
average M is taken into account in solving Eq. (2.2).
Numerical simulations indicate that the quantities ||x(¢)||?
and ||x,,||? are self-averaging in the large N limit; that is, for
large N, ||x(#)]|* or ||X,]||? for any typical random realization
of J will be very close to their ensemble averages, given by
Egs. (2.25) and (2.32), respectively, with the random deviations
from these averages approaching zero as N goes to infinity (see
Figs. 1, 3, and 8, below). This conclusion is also corroborated
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by rough estimations (not shown) based on Feynman diagrams
(the diagrammatic method is introduced in Secs. III and IV)
of the variance of fluctuations of these quantities for different
realizations of J.

Finally, we note that the general formulas presented in this
section are valid only for cases where the initial condition, X,
or the input structure, Iy or C I are chosen independently of the
particular realization of the random matrix J (e.g., cases where
X is itself random but independent of J, or when X is chosen
based on properties of M, L, or R). In particular, our results
do not apply to cases in which the initial condition or the input
is tailored or optimized for the particular realization of the
quenched randomness, J, in which case the true result could
be significantly different from those given by the formulas of
this section.

C. Some specific examples of M, R, and L

In this section we present the results of explicit calculations
of the eigenvalue density, Eq. (2.8), the average squared norm
of response to impulse, Eqgs. (2.21) and (2.25), and the total
power in response to sinusoidal input, Eq. (2.33), for specific
examples of M, L, and R (the details of the calculations for
the results presented here can be found in Sec. V). For many
of the examples presented here, L and R are both proportional
to the identity matrix; thus, in these examples the full matrix
is of the form M + o J, where o > 0 determines the strength
of disorder in the matrix. In Secs. IIC2 and II C 3, we also
present examples with nontrivial L and/or R.

Any matrix, M, can be turned into an upper-triangular form
by a unitary transformation; i.e.,

M=UTU', (2.34)
where U is unitary and T is upper-triangular (i.e., 7;; = 0 if
i > j) with its main diagonal consisting of the eigenvalues of
M. The difference between non-normal and normal matrices
is that for the latter, T can be taken to be strictly diagonal.
Equation (2.34) is referred to as a Schur decomposition of
M [44], and we refer to the orthogonal modes of activity
represented by the columns of U as Schur modes. The Schur
decomposition provides an intuitive way of characterizing
the dynamical system Eq. (2.2). Rewriting Eq. (2.2), with J
and I(¢) set to zero, in the Schur basis by defining y = Ufx
(i.e., y; is the activity in the ith Schur mode), we obtain
j—f = —yy + Ty. We see that activity in the jth Schur mode
provides an input to the equation for the ith mode only when
i <j (as T;; =0 for i > j). Thus, the coupling between
modes is feedforward, going only from higher modes to lower
ones, without any feedback. We refer to 7;;’s for j > i as
feedforward weights. As these vanish for normal matrices,
we can say that a matrix is more non-normal the stronger its
feedforward weights are.

Due to the invariance of the trace, the norm, and the adjoint
operation under unitary transforms, our general formulas for
the spectral density Eq. (2.8) and the average squared norm
in time and frequency space, Egs. (2.25) and (2.33), take the
same form in any basis, so, in particular, we can work in the
Schur basis of M. Hence, M can be replaced with T', provided
L and R are also expressed in M’s Schur basis and x( or Iy
are replaced with U'x, or U'l, respectively [45]. Thus, we
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use the feedforward structure of the Schur decomposition to
characterize the different examples we consider below. Our
examples are chosen to demonstrate interesting features of
non-normal matrices in the simplest possible settings.

1. Single feedforward chain of length N

In the first example, each and every Schur mode is
only connected to its lower adjacent mode, forming a long
feedforward chain of length N. For simplicity, we take all
feedforward weights in this chain to have the same value w,
so that

(2.35)

or, more succinctly, My, = w 8,41.m + AuSum-

Figure 1 shows the power spectrum of response (top
panel) and the eigenvalue distribution (bottom panel) of
A = M + oJ for an example M of the form Eq. (2.35) with
alternating imaginary eigenvalues, A, = (—1)"*'i. The black
dots in the bottom panel of Fig. 1 show the eigenvalues of A for
one realization of J, scattered around the highly degenerate
spectrum of M at +i (red dots). The top panel shows the
ensemble average of the total power spectrum of response,
(1%, 1|1} 7, of the system Eq. (2.2) to sinusoidal stimuli as given
by our general formula Eq. (2.33) (green curve), showing that
it perfectly matches the empirical average (red curve) over
a set of 100 realizations of J [the latter was obtained by

generating 100 realizations of J, calculating ||X,||? for each
realization, which is given by the numerator of Eq. (2.33)
with M replaced with M + o J, and then averaging the results
over the 100 realizations]. The pink (light gray) shading shows
the standard deviation of the power spectrum over these 100
realizations. This will shrink to zero as N goes to infinity, so
that for large N the power spectrum of any single realization
of A =M + oJ will lie very close to the ensemble average.
The system (2.2) in the zero-disorder case, o = 0, has two
highly degenerate resonant frequencies (imaginary parts of
the eigenvalues of M), w(jf = =1, leading to possible peaks
in the power spectrum at these frequencies. The smaller the
decay of these modes (in this case given by y) is, i.e., the
closer the eigenvalues of the combined matrix —y + M are to
the imaginary axis, the sharper and stronger are the resonances.
Comparing the zero-disorder power spectrum (blue curve)
with that for A = M + o J, we see that the disorder has led to
strong but unequal amplification of the two resonances relative
to the case without disorder. This is partly due to the disorder
scattering some of the eigenvalues of —y + A much closer to
the imaginary axis, creating larger resonances.

For M of the form (2.35) with all eigenvalues zero we have
analytically calculated the eigenvalue density, Eq. (2.8), the
magnitude of response to impulse Eq. (2.25), and the power
spectrum Eq. (2.33). In this case, using Eq. (2.5) naively yields
|z| < v/|w|? + o2 for the support of the eigenvalue density.
However, using the correct procedure, Egs. (2.19) and (2.20),
we find that this formula is only correct for o > |w|, while for
o < |w|, the true support of the eigenvalue density in the limit
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FIG. 2. (Color online) The eigenvalue spectra of A =M +oJ
for N = 2000 and M given by Eq. (2.35) with A, =0, w =1 for
single realizations of real Gaussian J. o = 0.95 and 0.5 in the left
and rights panels, respectively. The red circles mark the circular
boundaries of the spectral support given by Eq. (2.36). The insets
show a comparison of the analytic formula Eq. (2.37) for the spectral
density (black smooth trace) and histograms corresponding to the
particular realization shown in the main plot (red jagged trace).

N — oo is the annulus

VIwP? —o? <zl < VIwl* + 02

(this result was obtained in Ref. [31]). Within this support the
eigenvalue density in either case is

(2.36)

1 |w|?
p)=— [1 - —} . (2.37)
wo VAP + o

Figure 2 demonstrates the close agreement of Egs. (2.36) and
(2.37) with the empirical spectrum of M + o J for a single
realization of J, for N = 2000 and two different values of
o . The discrepancy between the results obtained by the naive
use of Eq. (2.5) and Eq. (2.36) is due to the fact that for
|z| < |w|, M, =(z— M)/o has an exponentially small,
O(e~N), singular value (see next paragraph) which makes
the result of Egs. (2.19) and (2.20) dependent on the order of
the two limits N — oo and g — 01. As we discussed after
Eq. (2.12), such a discrepancy can signify the existence of
an O(1) number of outlier eigenvalues outside the support
of limy_ o o(z). Simulations show that this is the case for
Iz < +/|lw|? — o2 (see Fig. 2).

The most striking aspect of these results is revealed in the
limit o — 0. For o = 0, the spectrum is that of M, which
is concentrated at the origin. Remarkably, however, as seen
from Egs. (2.36) and (2.37), for very small but nonzero o
the bulk of the eigenvalues are concentrated in the narrow
ring with modulus |z| & |w|. Thus, in the limit N — oo
the spectrum has a discontinuous jump at ¢ = 0. This is
a consequence of the extreme non-normality of M, which
manifests itself in the extreme sensitivity of its spectrum
to small perturbations, which is well known (see Ref. [17],
Chap. 7). The notion of pseudospectra quantifies this sen-
sitivity: The (operator norm) € pseudospectrum of M is
the region of complex plane to which its spectrum can be
perturbed by adding to M a matrix of operator norm no
larger than €. As we mentioned in Sec. I[ A, this is precisely

PHYSICAL REVIEW E 91, 012820 (2015)

the set of complex values z for which [[(z — M)7!|| > ¢!

[17], and therefore by the definition of the operator norm
|| - |I, the region in which [|[(z — M)™!|| 7! = spin(z — M) < €,
where smin(z — M) is the least singular value of z — M. As
noted above, for |z| < |w|, smin(z — M) is exponentially small:
Smin(z — M) < |w||%|N [for a proof, see after Eq. (5.15) in
Sec. V A]. Thus, the € pseudospectrum of M contains the
set of points z satisfying |u)||§—)|N < ¢, i.e., the centered disk
with radius |w|(ﬁ)1/N, which approaches |w| as N — oo.
In other words, for large enough N, any point |z| < |w]| is in
the € pseudospectrum for any fixed €, no matter how small.
It has been stated [17] that dense random perturbations, of
the form o J considered here, tend to trace out the entire €
pseudospectrum (where € = o ||J|| & 20). Our result shows
that, for €,0 < |w|, the spectrum of such perturbations traces
out the € pseudospectrum in quite an uneven fashion; the vast
majority [@(N)] of the perturbed eigenvalues only trace out
the boundary of the pseudospectrum, |z| & |w|, while only a
few [O(1)] eigenvalues lie in its interior. Thus, dense random
perturbations can fail as a way of visualizing (operator norm
based) pseudospectra.

We now turn to the dynamics. We have explicitly calculated
the average evolution of the magnitude of x(¢), Eq. (2.25), and
the total power spectrum of steady-state response, Eq. (2.33),
for the case where the initial condition is (or the input is
fed into) the last Schur mode, i.e., the beginning of the
feedforward chain: xy = (0, ...,0,1)" [or Iy o< (O, ...,0,1)"].
For the evolution of the average norm squared, with the initial
condition xy = (0, ...,0,1)", we obtain

(XN, = e ot/ |w2 +02) (¢ =0), (2.38)

where 7,(x) is the vth modified Bessel function. Figure 3
plots the function Eq. (2.38) and compares it with the result
obtained by ignoring the disorder (corresponding to o = 0).
The main difference between the two curves is the slower
asymptotic decay of the o # 0 result (green) compared with
the zero-disorder case (purple). This is the result of the
disorder spreading some of the eigenvalues of —y + A closer
to the imaginary axis, creating modes with smaller decay.
Importantly, in neither case do we see transient amplification.
By contrast, in the ¢ = 0 and for small enough decay, i.e., for
y < |w], the system Eq. (2.2) exhibits very strong transient
amplification. In this case, starting from the initial condition
xo = (0, ...,0,1)", the solution for the (N — n)th Schur com-
ponent is xy_,(t) = %e"” (for 0 < n < N — 1), which
is maximized at t+ = n/y with a value max |xy_,| ~ (‘]"/—")"
for n > 1. Thus, up to time r ~ N/y the norm of the
activity grows exponentially; [|x(¢)]|* > (%)27’ fort <N/y.
For larger times the activity reaches the end of the N-long
feedforward chain and starts decaying to zero; asymptotically,
Ix(@)||> ~ e~2" for t 3> N/y. However, as we have seen, the
spectrum of M is extremely sensitive to perturbations; even
for very small but nonzero o, the spectrum of —y 1+ A has
eigenvalues with a real part as large as |w| — y. Therefore, in
the limit N — oo, the system Eq. (2.2) is unstable for |w| > y,
as soon as o # 0. Conversely, in the presence of disorder
(even infinitesimally small disorder in the N — oo limit), as
long as the system is stable [which from Eq. (5.15) requires

y > +/|w|* + 02] it exhibits no transient amplification for

012820-9



AHMADIAN, FUMAROLA, AND MILLER

FIG. 3. (Color online) The norm squared of the response to
impulse, ||x(¢)?, of the system Eq. (2.2), for A = M + o J, with
binary J, and M given by Eq. (2.35) (with A, = 0) describing a
N-long feedforward chain with uniform weights w. Here w =1,
o =0.5, y =1.005v02 + w? >~ 1.124, and N = 700. The green
(thick dashed) curve shows our result, Eq. (2.38), for the average
squared impulse response, ([|x()||>),, which lies on top of the red
(thick solid) curve showing the empirical average of ||x(¢)||? over 100
realizations of binary J. The five thin dashed black curves show the
result for five particular realizations of J, and the pink (light gray)
area shows the standard deviation among the 100 realizations. The
standard deviation shrinks to zero as N — oo, and ||x(¢)||* for any
realization lies close to its average for large N. For comparison the
purple (thin, lowest) curve shows ||x(¢)||> obtained by ignoring the
effect of quenched disorder, i.e., by setting A = M.

the initial condition along the last Schur mode. Let us note,
however, that as we mentioned after Eq. (2.33), Eq. (2.25)
and hence Eq. (2.38) do not yield the correct answer when
the direction of the impulse is optimized for the specific
realization of the quenched disorder J; such disorder-tuned
initial conditions can yield significant transient amplification
even for the stable o # 0 system.

Incidentally, we can also read the result for M = 0 from
Eq. (2.38), by setting w =0, obtaining (|Ix(1)[?), =
e 2" [)(2ot). Since in this case all directions are equivalent,
this is the answer for the (normalized) initial condition
along any direction, again as long as the direction is chosen
independently of the specific realization of J.

Finally, the total power of response to a sinusoidal input
with amplitude Iy = (0, ...,0,1y)" is given by

(%12, = ol
@ w2+y2_|w|2_02

(2.39)

The main effect of the disorder is to reduce the width of the
resonance (the peak of (||x,||2); at @ = 0) and increase its
height. This is partly a consequence of the scattering of the
eigenvalues of —y + A closer to the imaginary line by the
disorder, creating modes with smaller decay.
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2. Examples motivated by Dale’s law: 1 or N /2 feedforward
chains of length 2

In this section we consider examples motivated by Dale’s
law [4-6] in neurobiology. Dale’s law is the observation
(which holds generally but with some exceptions [46,47]) that
individual neurons release the same neurotransmitter at all
of their synapses. In the context of many theoretical papers
including this one, it refers more specifically to the fact that
an individual neuron either makes only excitatory synapses or
only inhibitory synapses; that is, each column of the synaptic
connectivity matrix has a fixed sign, positive for excitatory
neurons and negative for inhibitory ones. We first consider two
examples of connectivity matrices respecting Dale’s law which
take the form Eq. (2.1) with L = 0 ~'R = 1 and a scalar o. At
the end of this section we consider an example with nontrivial
L and R.

In the first example, we consider a matrix M, which, as we
show, has a Schur form 7 that is composed of N /2 disjoint
feedforward chains, each connecting only two modes (we
assume N is even). For simplicity we focus on the case where
all eigenvalues are zero. Thus, in the Schur basis we have

0 w 0 O
0O 0 0 O .
0 0 0 w - 0 1)
T = 2 =W , (240
o o0 o o --.. <0 0 ( )

where we defined W to be the N/2 x N /2 diagonal matrix of
Schur weights W = diag(wy,w, ...,wy,2). T in Eq. (2.40)
arises as the Schur form of a mean matrix of the form

1/K -K 11 -1

where K is a normal (but otherwise arbitrary) N /2 x N /2 ma-
trix (note that M is nonetheless non-normal). The feedforward
weights in Eq. (2.40) are then the eigenvalue of K. When K
has only positive entries, matrices of the form Eq. (2.41) satisfy
Dale’s principle, and were studied in Ref. [7], in the context
of networks of excitatory and inhibitory neurons. We imagine
a grid of N/2 spatial positions, with an excitatory and an
inhibitory neuron at each position. %K , a matrix with positive
entries, describes the mean connectivity strength between
spatial positions, which is taken to be identical regardless of
whether the projecting or receiving neuron is excitatory or
inhibitory. The sign of the weight, on the other hand, depends
on the excitatory or the inhibitory nature of the projecting
or presynaptic neuron; the first (last) N/2 columns of M
represent the projections of the excitatory (inhibitory) neurons
and are positive (negative). Since K is normal, it can be
diagonalized by a unitary transform: K = EWET, where W is
as above, and E = (ej,e,, .. .) is the matrix of the orthonormal
eigenvectors e, of K, b =1,...,N/2 (with eigenvalues wyp).
Then transforming to the basis

1(6)-(2)-(3)-(2) () ()]

(where 0 represents the N /2-dimensional vector of 0’s)
transforms the matrix to being block-diagonal with the 2 x 2

(2.41)
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1(Ws

along the diagonal. The bth block becomes

0 Wp
0o 0
in its Schur basis

7 () 7 ()]

so the full matrix takes the form Eq. (2.40). Thus, the bth

difference mode
1 (e
V2 \—&

feeds forward to the bth sum mode

)

with weight w. This feedforward structure leads to a specific
form of non-normal transient amplification, which the authors
of Ref. [7] dubbed “balanced amplification”; small differences
in the activity of excitatory and inhibitory modes feedforward
to and cause possibly large transients in modes in which the
excitatory and inhibitory activities are balanced.

Another interesting example of Dale’s law is that in which
M simply captures the differences between the mean inhibitory
and mean excitatory synaptic strengths and between the
numbers of excitatory and inhibitory neurons, with no other
structure assumed (uniform mean connectivity), as studied in
Ref. [41]. Thus, all excitatory projections have the same mean
we/ /N, and all inhibitory ones have the mean —pu;/ VNIt
we assume a fraction f of all neurons are excitatory, then we
can write M as

matrices

—wy
—wy

), b=1,...,N/2,

M =uv", (2.42)
where u = N~V2(1,...,1)" is a unit vector, and the vector v
has components v; = ug or v; = —puy fori < fN and i >

[N, respectively [for f =1/2 and ug = u;, Eq. (242) is
a special case of Eq. (2.41)]. The single-rank matrix M has
only one nonzero eigenvalue given by v - u = \;W > vi, with
eigenvector u. The case in which the excitatory and inhibitory
weights are balanced on average, in the sense that Zi v; =0,
is of particular interest; mathematically, it is in a sense the least
symmetric and most non-normal case as v - u = 0. In this case
all eigenvalues of M are equal to zero. Furthermore, since in
this case u and v are orthogonal, we can readily read off the
Schur decomposition of M from Eq. (2.42). The normalized
Schur modes are given by u, v/||v|, and N — 2 other unit
vectors spanning the subspace orthogonal to both u and v. All
feedforward Schur weights are zero, except for one very large
weight, equal to ||v|| o /N, which feeds from v/|lv| to u.
Thus, the Schur representation of M has the form Eq. (2.40),
with w; = ||v|| = u+/N and wpz1 = 0, where we defined

Wr=w(MM) = |vI*/N = fug + (1 — fu].

Note that this is again a case of balanced amplification:
Differences between excitatory and inhibitory activity, repre-

(2.43)
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sented by v, feedforward to balanced excitatory and inhibitory
activity, represented by u, with a very large weight. In the
following we present results only for this balanced case of
Eq. (2.42), which as just noted is a special case of Egs. (2.40).

We start by presenting the results for the eigenvalue density.
For general diagonal W in Eq. (2.40) [or equivalently, for
general normal K in Eq. (2.41)], the eigenvalue density, p(z),
of A= M 4 oJ is isotropic around the origin z =0 and
depends only onr = |z|. The spectral support is a disk centered
at the origin. In cases in which all the weights w;, are O(1), the
radius of this disk can be found directly from Eq. (2.5), which

yields
1T s |
Wy b
l’o—cr|:2+ 4+ 252 :|

Here {(|wp|?), is the average of the squared feedforward
weights over all blocks of Eq. (2.40); equivalently, (|w;|?), =
2tr(MTM) = 2u>. As long as some w, are nonzero, ry is
larger than the radius of the circular law, o, with the difference
an increasing function of (Jw,|?),; thus, the spreading of
the spectrum of M (originally concentrated at the origin)
after the random perturbation by o J, is larger the more
non-normal M is. In cases in which the feedforward weights
of some of the 2 x 2 blocks of Eq. (2.40) grow without
bound as N — oo, there is a corresponding singular value
of M, «x z — M for every such block which is nonzero for

(2.44)

z # 0 but vanishes in the limit, scaling like ~|‘;—|:, where wy,
is the unbounded weight of that block [see Eq. (5.37) and its
preceding paragraph]. [Note that, as stated after Eq. (2.3), we
assume [M|, =p = (lwp|?)p/2 is O(1), so that at most
o(N) number of weights can be unbounded, and each can at
most scale like O(N'/?).]

In line with the general discussion after Eq. (2.12), in such
cases the naive use of Eq. (2.5) may yield an area larger than
the true support of limy_, ~ 0(2); the correct support must be
found by using Eqgs. (2.19) and (2.20), which in this case can
yield a support radius strictly smaller than Eq. (2.44).

We have calculated the explicit results for limy _, - 0(z) for
two specific examples of M with the Schur form Eq. (2.40).
The first example belongs to the first case (bounded wj;’s)
where limy_, o p(z) is ®(1) within the entire disk r < ry,
while the second belongs to the second case (unbounded wj’s)
where the limit density is only nonzero in a proper subset of
that disk.

In the first example, we take all the Schur weights in
Eq. (2.40) to have the same value, which we denote by w. In

. . e 1 n_(r)
this case, the.elgenvalue d§n51ty is given by p(;.’) = 3 "arr ,
where n_(r) is the proportion of eigenvalues within a distance

r from the origin and is given by

=" i
n(rH=—|1-
b o2 02+\/o*4+|w|4+4|w|2r2

} . (2.45)

n_(r) reaches unity exactly at r = ry given by Eq. (2.44),
and p(r) is (1) for any smaller r. Figure 4 shows the close
agreement of Eq. (2.45) with empirical results based on single
binary realizations of J, for N as low as 60.

The second example is that of the balanced Eq. (2.42) with
u-v=0.As we saw, all w, are zero in this case except for
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FIG. 4. (Color online) The eigenvalue spectra of A =M + o J
for a binary J with ¢ =0.1 and M given by Eq. (2.41) with
K =1 [corresponding to w;, = 1 for all the diagonal 2 x 2 blocks in
Eq. (2.40)]. The main panels show the eigenvalues for single
realizations of J, with N = 600 (left) and N = 60 (right). The red
circles mark the boundaries of the spectral support, Eq. (2.44). Since
A isreal in this case, its eigenvalues are either exactly real, or come in
complex conjugate pairs; the spectrum is symmetric under reflections
about the real axis. However, such signatures of the reality of the
matrix appear only as subleading corrections to the spectral density
p(2); they are finite-size effects which vanish as N — oo. The insets
show a comparison of the analytic formula Eq. (2.45) (black curve)
and the empirical result, based on the eigenvalues of the realizations
in the main panels, for the proportion, n_(r), of eigenvalues lying
within a radius r of the origin (red dots). The random fluctuations
and the average bias of the empirical n_(r) are both already small for
N = 60 and negligible for N = 600.

one very large, unbounded weight w; = u+/N. As discussed
above, in this case M; & z — M has an o(1) smallest singular

value, approximately given by /K/‘oﬁ Using Egs. (2.19) and
(2.20), we find that the support of limy_, o o(2) is the disk
with radius o [within the annulus o < |z| < ry the eigenvalue
density is o(1)], and solving Egs. (2.8) and (2.9) for |z] < o,
we find that the spectral density is, in fact, identical with the
circular law (the eigenvalue density for the M = 0 case), i.e.,

o+ ol
p(r)={’"’ o

(r <o),
(2.46)
o(1) (r > o).

It was shown in Refs. [37,48] that more generally, for any
M of rank o(N) and bounded || M ||, the eigenvalue density of
A = M + o J is given by the circular law in the limit N — oo.
For single rank M (as in the present case) and a diagonal R, it
was shown in Ref. [49] that the eigenvalue density of M + J R
agrees with that of JR as N — oo. In the present example, it
was observed in Ref. [41] that even though the majority of the
eigenvalues are distributed according to the circular law, there
also exist a number of “outlier” eigenvalues spread outside the
circle |z| = o, which, unlike in the M = 0 case, may lie at a
significant distance away from it (see Fig. 5). As we mentioned
in Sec. II A, the noncrossing approximation cannot be trusted
to correctly yield the o(1) contributions to p(z) by these outliers
for |z] > o. However, we found that if we ignore this warning
and use Egs. (2.8) and (2.9), keeping track of finite-size o(1)
contributions, we obtain results that agree surprisingly well

PHYSICAL REVIEW E 91, 012820 (2015)
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FIG. 5. (Color online) The eigenvalue spectra of A =M +oJ
for the M given by Eq. (2.42) in the balanced case, v'u = 0. Here
N =800, 0 =1, and p = 12 [see Eq. (2.43)]. The black dots are
the superimposed eigenvalues of A for 20 different realizations of
complex Gaussian J. The small red circle enclosing the vast majority
of the eigenvalues has radius o = 1, corresponding to the standard
circular law Eq. (2.46). A ®(N) number of eigenvalues lie within
this circle. A ©(+/N) number lie just outside of this circle in a thin
boundary layer which shrinks to zero as N — oo. Finally, a ©(1)
number of eigenvalues lie at macroscopic distances outside the unit
circle. The dashed blue circle shows radius r( given by Eq. (2.44);
outliers can even lie outside this boundary.

(though not completely) with simulations. First, for the total
number of outlier eigenvalues lying outside the circle |z| = o
we obtain

N_(6) = Nn_(6) =+/N + 0(1) (2.47)

[here we defined n_(r) =1 —n_(r) to be the proportion of
eigenvalues lying outside the radius r]; see Fig. 6 for a
comparison of Eq. (2.47) with simulations. The vast majority
of the outlier eigenvalues counted in Eq. (2.47) lie in a narrow
boundary layer immediately outside the circle |z| = o, the
width of which shrinks with growing N. In addition to these,
however, there are a ®(1) number of eigenvalues lying at
macroscopic, ®(1) distances outside the circle |z] = o. Using
Eqgs. (2.8) and (2.9) we have calculated N_(r), the number of
outlier eigenvalues lying outside radius » for r > o. Figure 7
shows a plot of N_(r) and compares it with the results of
simulations for different N. For roughly the inner half of
the annulus 0 < |z| < ro, N_(r) agrees well with simulations,
but as r increases it deviates significantly from the empirical
averages. In particular, N_(r) calculated from Egs. (2.8) and
(2.9) vanishes at ry given by Eq. (2.44), while the empirical
average of the number of outliers is nonzero well beyond ry.
Finally, we note that the distribution of these eigenvalues is
not self-averaging and depends on the real vs complex nature
of the random matrix J [37]. In the real case, their distribution
has been recently characterized as that of the inverse roots of
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FIG. 6. (Color online) The number of eigenvalues of M + o J,
for the M given by Eq. (2.42), lying outside the circle of radius o vs N
(redline). Hereo = 1, u = 12, and v'u = 0. The numbers (red points
connected by solid red lines) are obtained by numerically calculating
the eigenvalues and counting the outliers for 200 realizations of J,
and taking the average of the counts over all realizations, for N =
100,200,400,800,1600 (error bars show standard error of mean).
The black dashed line plots v/N for comparison with our theoretical
result Eq. (2.47); the (dashed) blue line which includes subleading
corrections to +/N, is obtained by numerically solving Eq. (5.42)
and substituting the result in Eq. (5.43) [these formulas are, in turn,
obtained from Eqgs. (2.8) and (2.9) in Sec. V B].

5
N (r)
45

3.5 1
251

1.5¢

0.5¢

FIG. 7. (Color online) The number, N_(r), of outlier eigenvalues
of A= M + o J, for the M given by Eq. (2.42), lying farther from
the origin than r, as a function of r. Here 0 =1, u = 12, and
v'u = 0. The vertical line marks |z| = ro >~ 3.54, where r is given
by Eq. (2.44). The colored (shades of gray) connected points are
N_(r) for realizations of A, based on 200 samples of J, each color
for a different N, for N = 100, 200, 400, 800, 1600, and 3200 (error
bars show standard error of sample mean). Note the lack of scaling
of N_(r) with N.
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FIG. 8. (Color online) The squared norm of response to impulse,
Ix(2)||%, of the system Eq. (2.2), for A = M + o J, with log-normal
J, and M given by Eq. (2.40) describing N /2 doublet feedforward
chains weights w;,. Here w, = /{Jwp|?)y =3, 0 =04, y =1,
and N = 1400. The green (thick dashed) curve shows our result,
Egs. (2.48) and (2.49), for the average norm squared, which, except
for a small window around its peak, lies on top of the red (thick solid)
curve showing the empirical average of ||x(¢)||> over 100 realizations
of binary J. The five thin dashed black curves show the result for five
particular realizations of J, and the pink (light gray) area shows the
standard deviation among the 100 realizations. The standard deviation
shrinks to zero as N — oo and ||x(#)||?> for any realization lies close
to its average for large N. For comparison, the purple (thin, lowest)
curve shows ||x(¢)||> obtained by ignoring the effect of quenched
disorder, i.e., by setting A = M.

a certain random power series with iid standard real Gaussian
coefficients [37].

As for the dynamics, we have analytically calculated
the magnitude of impulse response, Eq. (2.25), as well as
the power-spectrum of steady-state response Eq. (2.33), for
A =M+ oJ with M given by Egs. (2.40) and (2.41) with
general wy, when the (impulse or sinusoidal) input feeds into
the second Schur mode in one of the N /2 chains/blocks of
Eq. (2.40); we denote the index for this block by a. For the
average magnitude of impulse response we find

14+ C, 1-C,
IyQ2rot) +

(Ix@)II*) ;= [ Jo(2r1t)} e,

(2.48)
where Jo(x) [Ip(x)] is the [modified] Bessel function, ry is
given by Eq. (2.44), we defined r} = r — 0, and

1 2 a2 2
c, = —+2lwl/o (2.49)

T+ 2wy P/

with (Jwp|?)p = 2tr(MTM) denoting the average squared
feedforward weight among all the blocks of Eq. (2.40). In
Fig. 8 we plot Eq. (2.48) and compare it with the result obtained
by ignoring the disorder (i.e., by setting o = 0); in the latter
case, the block a is decoupled from the rest of the network,
and solving the 2 x 2 linear system governed by the matrix

-V Wq
0o —y/)°
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we obtain [|x(#)[|> = (1 + w2¢?)e=2"". From the figure, we see
that the o # O result (green) has a slower asymptotic decay
compared with the zero-disorder case (purple); this is due
to the disorder having spread some eigenvalues closer to the
imaginary axis, creating modes with smaller decay, along with
the fact that the coupling between the 2 x 2 blocks induced
by the disorder ensures that these more slowly decaying
modes will be activated. Indeed, for large ¢, ||x(#)| decays
like e 7! when o = 0, while in the o > 0 case, based on
Eq. (2.44) it must decay like e~ "0 ie., by a rate set by
the largest real part of the spectrum shifted by —y [this is
indeed what we obtain from Eq. (2.48) using the asymptotics
of Bessel functions]. In addition, both curves exhibit transient
amplification where the magnitude of activity initially grows
to a maximum, before it decays asymptotically to zero. The
o # 0 curve shows larger and longer transient amplification,
which is most likely attributable both to the eigenvalues being
closer to the Re(z) = y line and to augmented non-normal
effects (e.g., larger effective feedforward weights, or longer
chains).

We also mention that, as in our previous examples, if the
input direction is optimized for the particular realization of J,
significantly larger transient amplification may be achieved.

Finally, the total power spectrum of response to a sinusoidal
input, Eq. (2.32), is given by the explicit formula

_ o+ y? + |wa|?
(@ +y?) —oX @ +y* +u?)

(Ixol12) ITl%, (2.50)
where 2 = tr (MTM) = (Jwy|?)/2 and, as noted above, the
direction of I is that of the second Schur mode in block a.

The example Eq. (2.42) motivated by Dale’s law with
neurons of either excitatory or inhibitory types, can be
generalized to a network of neurons belonging to one of
C different types (these could be subtypes of excitatory or
inhibitory neurons), in which not only the mean but also
the variance of connection strengths depends on the pre- and
postsynaptic types. When this dependence is factorizable, in
a way we now describe, the connectivity matrix of such a
network will be of the form Eq. (2.1) with nontrivial L and
R. Let c(i) € {1, ...,C} denote the type of neuron i, and let
f¢ denote the fraction of neurons of type c (so Zf:l fe=1);
we assume C and f. are all ®(1). Assume further that each
synaptic weight is a product of a pre- and a postsynaptic factor
and that in each synapse these factors are chosen independently
from the same distribution, except for a deterministic sign and
overall scale that depend only on the type of the pre- and
postsynaptic neurons, respectively. Thus, if A;; denotes the
weight of the synaptic projection from neuron j to neuron i,
we have

1
Ajj = ﬁ(lc(i)xij)(rc(j)yij)v (2.51)
where x;;’s and y;; are positive random variables chosen iid
from the distributions P.(x) and P,(y), respectively. Here
l. and r, determine the sign and the scale (apart from the
overall \/Lﬁ) of the pre- and postsynaptic factors of the
neurons in cluster ¢, respectively. Note that when all /. are
positive, A;; satisfies Dale’s law. By absorbing appropriate
constants into /.’s and r.’s we can assume that Var[xy] =

PHYSICAL REVIEW E 91, 012820 (2015)

(x2)(y%) — (x)%(y)? = 1. Then it is easy to see that A can be
cast in the form Eq. (2.1) with

L,’j = lc(i)B,-j, (252)
Rij = reidij, (2.53)
L (2.54)

ij = ——=XijYij — &), .

J JN jYij
M =sLuu" R, (2.55)
. . 1
where u is the unit vector ﬁ(l’ LD

s =&VN, (2.56)

and & = (x)(y) is dimensionless and ®(1) [note that J,
given by Eq. (2.54), indeed has iid elements with zero mean
and variance N~!]. Being single rank, M has N — 1 zero
eigenvalues; its only (potentially) non-null eigenvector is Lu,
with a generically large eigenvalue

N
1
h = suTRLU = 5 > repleiy = EVNioe)e,  (2.57)

i=1

where we defined

o, =l.re, (2.58)
C

(Xe)e =Y feXe (2.59)
c=1

As for the example Eq. (2.42), we focus on the balanced
casein which Ay (o). = 0. FromEq. (2.55), M = @V" with
il = Lu and V = s Ru. The balanced condition is equivalent to
-V = 0[seeEq.(2.57)]. Thus, similar to Eq. (2.42), the Schur
representation of M has the form (2.40), with w; = |[@||||V]|
and w, =0 forb > 1.

In Sec. V C we prove that, as for Eq. (2.42), for the ensemble
Egs. (2.52)—(2.55) the limit of the eigenvalue distribution,
limy_, p(z), is also not affected by the nonzero mean
matrix Eq. (2.55); hence, we can obtain limy_, o p(z) for that
example by safely setting M to zero, and using formulas,
Egs. (2.13)-(2.16), with L and R given by Egs. (2.52) and
(2.53). Thus, limy_, « p(z) is isotropic and its support is the
disk with radius

ro = ||RL||lF = /(c?).. (2.60)

As in the previous example, when the balance condition
{(0¢)c = 0 holds, use of the naive formula Eq. (2.5) with
M = a¥v" would have yielded

172
. 1 N 1 e
Ffo=ro| = - ,
T2V
which is larger than the correct result Eq. (2.60). As discussed
above, this result is not correct, but it indicates the existence of
O(1) number of outlier eigenvalues lying outside the boundary

of limy_, o p(2) given by Eq. (2.60). For r < ry, the N — oo
limit of the proportion, n.. (), of eigenvalues lying farther than

2.61)
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distance r of the origin is given by g2(r) which is found by
solving Eq. (2.15), or, equivalently,

1
—) =1
<g2 +o:°r2 >c

The results, Egs. (2.17) and (2.18), also hold, wherein the
normalized sums over i can be replaced with appropriate
averages (-).. In the case of two neuronal types a closed
solution can be obtained for n. (r) and p(r). Identifying the
two types with excitatory and inhibitory neurons, and assuming
that [, =1, 0p =01 > 0,and 067 =0, < 0 (we use E and /
as indices instead of ¢ = 1 and 2, respectively) the ensemble
Egs. (2.52)—(2.55) describes a synaptic connectivity matrix in
which all excitatory (inhibitory) connections are iid with mean
Eop N~ (—£|o;|N~2) and variance 62N~ (62N ~1). In this
case, Eq. (2.62) yields a quadratic equation. Differentiating
the solution of that equation with respect to r> we obtain the
explicit result

2.62)

Dy » (JE2+01—2)F271 rg—2r2

p(r) — UE + UI 1 _ 2 0L2-‘+UIZ
o (o +o)r-1] | r(d-r)
4 (ogor)?

(2.63)

This result was first obtained (in a less simplified form)
in Ref. [41]. Figure 9 shows two examples of spectra for
single realizations of matrices of the form Eq. (2.51), with
three neural types (C = 3), where x;; and y;;, and hence
Jij, have log-normal distributions. The insets compare n.. (r)
based on the numerically calculated eigenvalues, with those
found by solving Eq. (2.62). In the right panel, the normally
distributed log J;; have a higher standard deviation, and hence
the distribution of J;; has a heavier tail. The right panel’s inset
demonstrates that the convergence to the universal, N — oo
limit can be considerably slow when the distribution of J;; is
heavy tailed.

3. Linearizations of nonlinear neural and ecological networks

In neuroscience applications, Eq. (2.2) can arise as a
linearization of nonlinear firing rate equations for a recurrent
neural network of N neurons, around some stationary back-
ground. The nonlinear dynamical equations for the evolution
of the network activity typically take the form [50]

sz(tt ) o)+ W) + ().

Here v(¢) is the vector of state variables of all neurons at
time ¢; its ith component, v;(¢), is commonly thought of as the
voltage of the ith neuron, or the total synaptic input it receives.
f(-) is the neuronal nonlinear input-output function, which
is imposed element by element on its vector argument, with
f(v); = f(v;) giving the output, i.e., the firing rate, of neuron
i; I'(¢) is the external input vector; T = diag(t;, 72, ...,Tn)
isa N x N diagonal matrix whose diagonal elements are the
positive time constants of the neurons (hence 7 is invertible);
and W is the N x N synaptic connectivity matrix.

Suppose that for a constant external input, I!, Eq. (2.64)
has a fixed point v,. Then, given a small perturbation in the

(2.64)
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15 ImA

FIG. 9. (Color online) The eigenvalue spectraof A =M + LJR
with M, L, and R given by Egs. (2.52)—(2.55) with neurons belonging
to one of three different types (C = 3). The main panels show the
eigenvalues for two particular realizations of J. In both panels,
N = 2000, fl = 06, fz = f3 202, lc = 1, oy =r = 076, Oy =
ry=—0.57,03 =r3 = —1.71(s0 (0.), = Oand r§ = (02}, = 1),and
Jij had real entries with log-normal distribution; in the left (right)
panel, the normally distributed log,, J;; had standard deviation 0.5
(0.75). The solid red circles mark the boundaries of the spectral
support as given by Eq. (2.60), and the dashed blue circles show
the radii given by Eq. (2.61). The insets compare n.(r) based on
the numerically calculated eigenvalues shown in the main panels
(connected red dots), with that found by solving Eq. (2.62) (black
curve). In the right panel’s inset we have also plotted (green connected
dots lying slightly above the red connected circles) the empirically
calculated n.(r) for a single realization with the same ensemble
parameters, but with N = 8000; the convergence to the universal
limit at N — oo is significantly slower in the right panel in which
the distribution of J;; had a considerably heavier tail.

input, I'(¢) = I 4 6I"(¢), we can write v(¢t) = v, + x(¢), and
linearize the dynamics around the fixed point by expanding
Eq. (2.64) to first order in x(¢) and §I"(¢). This yields the set
of linear differential equations
dax(t

T% — —x(t) + WO X(1) + 5T°(1),
for the (small) deviations, where we defined the diagonal
Jacobian

(2.65)

® = diag[ f'(v.)].

Now suppose that the original connectivity matrix can be
written as W = (W) + W, with a quenched disorder part
that is an iid random matrix: W = ¢ J. Then multiplying
Eq. (2.65) by T~!, we can convert Eq. (2.65) into the form
Eq. (2.2),withy =0,and A = M 4+ LJR, with

(2.66)

M=T"Y =1+ (W)®), (2.67)
L=T7", (2.68)
R =09, (2.69)
and input
I(r) = T~ 81°(r). (2.70)
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This observation is not limited to neuroscience applications
and can also apply to many other frameworks, e.g., those used
in mathematical biology. Generalized Lotka-Volterra (GLV)
equations [52] used in modeling the dynamics of food webs
provide an example. Let n(¢) = [n(t), . .. ,ny(#)]" denote the
vector of population sizes of N species. The GLV equations
take the form % =n;(r; + Zj W;jn ;) or

dn .

o = diag(r + Wn)n, 2.71)
where r; > 0 are the species’ intrinsic growth rates and W is
the interaction matrix. Linearizing Eq. (2.71) around a fixed
point, n,, yields again a linear system of the form Eq. (2.2),
with y = I(t) = 0. Starting with the same simple model W =
(W) + o J, we find that A can be written in the form Eq. (2.1),
with

R =01,

L = diag(n,), (2.72)

M = diag(r + Wn,) + L(W). (2.73)

Note that if no species is extinct in the fixed point, i.e., if all
ni. > 0,then M = L(W).

Assuming that the linear systems thus obtained, i.e., the
fixed points v, or n,, are stable, we can therefore think of our
results for [|x(7)||> and ||x,,||*> as characterizing the temporal
evolution and the spectral properties of the linear response of
the nonlinear system Eq. (2.64) [Eq. (2.71)] in its fixed point
v, (n,) to perturbations.

The necessary and sufficient condition for the stability of a
fixed point (without any change in the external input) is that all
eigenvalues of the corresponding A have negative real parts.
Our formula for the boundary of the eigenvalue distribution,
Eq. (2.5), can be applied in these cases to map out the region in
parameter space (parameters here mean the time constants or
intrinsic growth rates in T or r, or the connectivity parameters
determining the random ensemble for W, i.e., o and the
parameters of (W)) in which a particular fixed point is stable.
Recently, our general formula Eq. (2.5) was used in this way by
colleagues [53] to determine the phase diagram of a clustered
network of neurons, in which intracluster connectivity is large,
but intercluster connectivity is random and weak. Because
of the strong intracluster connectivity, each cluster behaves
as a unit with a single self-coupling a. Letting the random
intercluster couplings between N clusters have zero mean and
variance g2/ N, their analysis starts from the equation

dv(1)
dt

where J is an iid random matrix as above. Here v is a vector
whose ith component is the mean voltage of cluster i, while
the nonlinear function tanh[v(?)] (with the hyperbolic tangent
acting componentwise) represents the vector of mean firing
rates of the clusters. The analysis of Ref. [53] shows that there
is aregion of the phase plane (a, g) where the self-connectivity,
a, is excitatory and sufficiently strong, in which the system
eventually relaxes to nonzero random attractor fixed points v.;
for smaller values of a, the dynamics is chaotic (chaos in the
a = 0 case was established in Ref. [54]). The form of these
fixed points [the distribution of the elements of v, as N — oo

= —v(t) + atanh[v(¢)] + gJ tanh[v(¢?)], (2.74)
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FIG. 10. (Color online) The eigenvalues (black dots) of A =
M + JR, with M and R given by Egs. (2.75) and (2.76) with g =
0.01,a = 1.02, and N = 2000. This matrix governs the dynamics of
small perturbations away from a nontrivial random fixed point in a
clustered network of neurons [see Eq. (2.74)], studied in Ref. [53].
The cyan dots on the real line are the eigenvalues of M, and the red
curve is the boundary of support of the eigenvalue distribution, as
calculated numerically from Eq. (2.5).

for a given (a,g)] can be obtained using mean-field theory, and
the linearization about v, leads to an equation in the form of
Eq.(2.2),with A = M + J R, where M and R are the diagonal
matrices

M = diag[—1 + a tanh'(v,)], (2.75)

R = diag[g tanh'(v,)]. (2.76)

Given this form, it can be shown that the fixed point v, is
stable if z = 0 is outside and to the right of the spectrum of the
Jacobian matrix of the linearization, A. The mean field solution
for v, determines the statistics of the elements of R2M 2 for
a given (a,g). From these it can be determined if z =0 is
outside the spectrum using our formula for the boundary of
spectrum, Eq. (2.5), which yields the requirement tr (Alf!—zz) < 1.
In this way, the region of stability of the fixed points in the
(a,g) plane can be mapped (see Ref. [53] for the results and a
complete discussion of the analysis outlined here). Figure 10
shows a numerical example of the eigenvalue distribution for
A for a given (a, g) and the superimposed boundary calculated
using Eq. (2.5).

In closing we note a potential caveat in the applicability
of our formulas to the linearization analysis of systems like
Egs. (2.65) and (2.71). We have derived the general formulas of
Secs. II A and IT B assuming that M, L, and R are independent
of J. However, M and R as given by Egs. (2.67) and (2.69)
[or M and L in Egs. (2.72) and (2.73)] depend on J via
their dependence on v, (n,). However, in our experience
this dependence is often too weak and indirect to render our
formulas inapplicable; an example is provided by the excellent
agreement of the empirical spectrum and the red boundary
given by our formula in Fig. 10, which also held for other
parameter choices of the model of Ref. [53].
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3. DERIVATION OF THE FORMULA FOR
THE SPECTRAL DENSITY

In this section we derive the formulas, Eqgs. (2.5)—(2.8), for
the average spectral density, p(z), of random matrices of the
form A = M + LJR, where M, L, and R are deterministic
matrices, and J is random with iid elements of zero mean and
variance 1/N. We use the Hermitianized diagrammatic method
developed in Refs. [24,25] (and reviewed in Ref. [55]), which
we recapitulate here for completeness. As mentioned in Sec. 11,
the spectral density is self-averaging for large N. Furthermore,
as established in Ref. [35], it is also universal in the large N
limit, in the sense that it is independent of the details of the
distribution of the elements of J as long its mean and variance
are as stated. The same universality theorem also ensures that
the real or complex nature of J does not, by itself, affect p(z)
to leading order. Therefore, for simplicity we consider the case
where J is a zero-mean complex Gaussian random matrix with
(JapJea) = 0, and

1
Jupd ) = —8400p4. 3.1
(JanJog) 7y OacOba (3.1)

L and all other first and second moments of

Thus, (| /%) = &
J (including (J;,)) vanish. The measure on J can be written
as

du(J) oc eV D T dimJpdRe Jo.
ab

(3.2)

In this form, and by the invariance of the trace, it is clear that the
measure is symmetric with respect to the group U(N) ® U (N),
acting on J by J > UJVT, where U and V are arbitrary
N x N unitary matrices.

For a particular realization of J, we define the “Green’s
function” G(z; J) by

1

G(z;J) = )
@D=5_7

(3.3)

where M, = L™!'(z — M)R™' [Eq.(2.6)].Inthecase L,R o 1,
G(z; J) will be proportional to the resolvent of A, FLA. More
generally, we have

1

— =R 'Gz; HL7. (3.4)
z— A
Following Ref. [24], we use the identity
) 1 , 1 1
67(z) = —0:0;In[z]" = —0: | - ), (3.5)
T b4 b4

where the first identity follows by noting that 43:9, = V2,
where V? is the two-dimensional (2D) Laplacian, and recalling
from electrostatics that the solution of Poisson’s equation for
a point charge at origin, i.e., V?¢(z) = 4w8%(z), in 2D is given
by the potential field ¢(z) = In |z|?; the second identity follows
from 9. In |z|* = 9.(Inz 4+ InZ) = 1 + 0. Using Eq. (3.5), we
can write the empirical spectral density, defined in Eq. (2.4),
as

1.1 1 1
PR =8 ) =—d:ur (3.6)

N ~ 7 — Ag b4 z—
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Performing the ensemble average we obtain

1
p() = (ps(); = —o 1 [(RL)(G(z M)yl BT

where we used Eq. (3.4) and the linearity and cyclicity of the
trace. Thus, to calculate p(z), our task boils down to calculating
(G(z; D))y

The diagrammatic technique provides a method for calcu-
lating averages of products of G(z; J)’s. However, this method
in its standard form relies on A being a Hermitian matrix. It
starts by an expansion of G(z; J) in powers of J, which is only
valid when z is far enough from the spectrum of A, i.e., away
from the points in which we are most interested. For Hermitian
matrices, this is no problem as the spectrum is confined to the
real line, and therefore G(z; J) and (G(z; J)); will be analytic
outside the real line. Thus, one can use the expansion for z
far away outside the real line, perform the averaging over J,
and sum up the most dominant contributions to obtain a result
analytic in z. This result can then be analytically continued
to z arbitrarily close to the spectrum on the real line, yielding
information about the spectrum. All this would seemingly fail
in the case of a non-normal (and in particular non-Hermitian)
A, with eigenvalues that, in general, cover a 2D region in the
complex plane. However, using a trick introduced by Ref. [24],
we can turn this problem to an auxiliary problem of averaging
the Green’s functions for a Hermitian matrix. By doubling
the degrees of freedom, one defines a z-dependent 2N x 2N
Hermitian “Hamiltonian,”

(0 M.—J

and the corresponding 2N x 2N resolvent matrix or Green’s
function depending on a new complex variable 7:

Gn,z;J)=[n— H@)]™!

(3.8)

(3.9)

M.—J
(ML—J)T(MZ—J)—W)

n
(M= )){ (M.~ J)—n?

n
_ (M=M= =12
- (M.~ D)t
(M. —J)(M.—T)T =12

For n — i0, we see that

. _ 0 (Mz - J)_]L
G0,z;J) = ((Mz _ ! 0 , (3.10)
and thus from Eq. (3.3), for any realization of J,
G(z; J) = — lim G*(n,z; ). (3.11)
n—i
Here we have used the notation
G''"(nz;J) GZ(n,z;))
G(n.z:J) = ( -~ o ) (3.12)
G (n,z;J) G=(n,z;J)

where G* (with o, 8 € {1,2}) are N x N matrices, forming
the four blocks of G. We have written the limit in Eq. (3.11) as
n — i0 to emphasize that until the end of our calculations
n is to retain a nonzero imaginary part, which serves to
regularize the denominators in Eq. (3.9); cf. the discussion
after Eq. (3.35). We carry out a perturbation expansion in
powers of J, so we decompose the Hamiltonian according to

H(z) = Ho(z) — J, (3.13)
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0 J 0 M,
JE(JT o)’ HO(Z)E<MZT 0)' (3.14)

We sometimes use a tensor product notation to denote matrices
in this doubled up space, e.g., writing J =07 ® J + 0~ ®
J1, where we defined the 2 x 2 matrices

. (0 1 _ {0 0
=% o) 2 =\1 o)

By aslight abuse of notation we also denote 2N x 2N matrices
oc*®1,, , by o, and we denote the identity matrix in any
space by 1. From Egs. (3.11) we obtain tr [(RL)'G(z; J)] =
—tr{[o* ® (RL)™'] G(i0",z; J)}, and from Eq. (3.7)

(3.15)

p@) =~ lim ~drurllo” @ (RLYIG0.2)  (.16)

— fim 3 tr [(RL)'G* (n.2)]. (3.17)
n—i0 7T
where we defined
G(n.2) =(G(n.z; ), . (3.18)

Having expressed p(z) in terms of the ensemble average of
the Green’s function for a Hermitian matrix, we now develop
the diagrammatic method for calculating ensemble averages of
products of G(n,z; J) [including G(n,z)]. Note that, being the
Green’s function of a Hermitian matrix, G(7,z; J) and hence
G(n,z) = (G(n,z; J)); are analytic functions of 1 for n outside
the real line, and therefore analytic continuation can be used
to take the limit  — 0 after obtaining the average over J for
n sufficiently away from the real line.

We denote the elements of a generic 2N x 2N matrix A
by Ajﬁ , where the greek indices range in {1,2} and the latin
indices range in {1, ..., /N}. Using this notation, the definition
Eq. (3.14), and Eq. (3.1), we can write the covariance for the
components of J as

(e 92, = %&msbc(a;,;o;s togoh) (319
(the terms proportional to o Yo+ and o =0~ involve (JupJeq),
or its complex conjugate, which vanish for the complex
Gaussian ensemble). It will be more handy to rewrite the
parentheses on the right side of Eq. (3.19) as ! anfﬂ + 715571; e

where
(1 0 > (0 O
S R (N N
yielding
2
; 1 , B
(g7, = NZ(naaéad)(niﬁ Sep)- (3.21)
r=1

Also, since J,;, have zero mean, we have (J); = 0.

The starting point of the diagrammatic method is the
perturbation expansion of G(,z;J) = [n — Hy(z) — J]7' in
powers of J,

G(1.z:0) = G(1.2:0) > [JG(n.z:0)]",
n=0

(3.22)
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m = (TSP TI)

ad 3 ey ds

09 o L

a,a b,B
—_—

= G2 (n,20)

ab

—— = (1), 2)

< = + < =

FIG. 11. The first two lines define different elements of Feyn-
man diagrams: the Green’s function for J =0 (zero disorder),
ij (n,z; 0), the covariance of two J elements, the ensemble averaged
Green'’s function, G(17,z) = (G(n,z; J));, and the self-energy % (7,z),
Eq. (3.24) [the matrix indices for G(n,z) and X(n,z) are arranged as
for ij (17,z;0)]. The third line is the diagrammatic representation of
the expansion Eq. (3.22) of G(n,z; J) before averaging over J, where
the J’s are represented by dashed lines. Averaging over Eq. (3.2) is
performed by pairing all J’s and connecting them with the wavy
lines representing (J.J). In the large N limit, the contribution of
crossing pairings is suppressed by negative powers of N; the sum
of all noncrossing diagrams, shown on the fourth line, yields the
leading contribution to G(n,z) for large N. The last line shows the
diagrammatic representation of Eq. (3.23), which if iterated generates
all the noncrossing diagrams. Alternatively, G(1,z) can be found by
solving this self-consistent equation directly.

where G(n,z;0) is given by Eq. (3.9) with the J’s set to zero.
This equation is represented diagrammatically in the third line
of Fig. 11; the thin arrows defined in the first line of the
figure represents G(7,z;0), and the dashed lines represent a
power of J before ensemble averaging. To obtain the average
resolvent, G(n,z), we then average Eq. (3.22), term by term,
with respect to the ensemble Eq. (3.2). Since the measure
is Gaussian with zero mean, according to Wick’s formula,
the average of each term of Eq. (3.22) involving n factors
of J is given by a sum over the contributions of all possible
complete pairings of the J’s in that term [in particular, since
(J); = 0,terms in Eq. (3.22) with odd powers of J vanish after
averaging]. Each pairing can be represented as a Feynman
diagram, as shown in Fig. 11, the first two lines of which
define the diagram elements. For example, the last diagram in
the fourth line of Fig. 11 shows one possible pairing of the
term in Eq. (3.22) corresponding to n = 6. The contribution of
each pairing diagram is given by a product of factors, one per
each pair, given by Eq. (3.21) (represented by wavy lines) with
the right indices for that pair, as well as the factors of G(7,z;0)
(represented by thin arrows), with all the intervening greek and
latin matrix indices summed over their proper ranges. We show
in Appendix A that for Imn # 0, and so long as ||((RL)™'||
remains bounded as N — o0, only noncrossing pairings need
to be retained in the large N limit, as crossing pairings are
suppressed by inverse powers of N and do not contribute in
the limit (a pairing diagram is noncrossing if it can be drawn
on a plane, with the wavy lines drawn only on the half-plane
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above the straight arrow line, without any wavy lines crossing).
As the last two lines of Fig. 11 demonstrate, all noncrossing
diagrams can be generated by iterating the equation

G(n,z) = G(n,z;0) + G(n,z;0)X(n,2)G(n,2),

starting from Gp)(1,z) = G(n,z;0). This equation is repre-
sented diagrammatically in the last line of Fig. 11, with the
“self-energy” matrix, X(n,z), defined by the diagram in the
second line of that figure, i.e.,

Z(n.2) = {(JG.2)J); .
Using Eq. (3.21) we obtain

(3.23)

(3.24)

2
1
Zea1,2) = 8aa Y7oy Tl G0LD) (325)

r=1

which using Eq. (3.20) we can write as

—iga(n,2)1 0 )
%(n,2) =< . , (3.26)
! 0 —ignol
where we defined the scalar functions
8«(n,2) =i tr G**(n,2). (3.27)

Using Eq. (3.26), we can solve Egs. (3.23)—(3.26) for G(1,2)
at once, in terms of g,(7,z), and then use Eq. (3.27) to obtain
a self-consistency equation, which can be solved for g,(#,2).
To this end, we multiply Eq. (3.23) by G~!(,z; 0) on the left
and by G~!(5,z) on the right to obtain

- -1
Gn.2) =[G (n,2:0) — 2(n,2)]
= [ — Ho(x) = T(.2)]"".
Using this expression with Egs. (3.14) and (3.26), it can be

easily checked that
— M)K;!
(2= MK, ) (3.29)

Gy — [T isOKT!
’ Z—MHK' (i +ig)K, !

(3.28)

where K| = MZMZT + (g1 —in)gx—in) and Kp=
MIMZ + (g1 —in)(g2 — in), and we dropped the arguments
of g4(n,z) for succinctness. Imposing Eq. (3.27) we obtain

the self-consistency equations

g1 = (g —int (K1), (3.30)

g =(g—int (K. (3.31)

Before solving these equations for g; and g5, we first show that
tr (Kl_l) =tr (Kz_'). One way to see this is to use the singular
value decomposition (SVD) of M, in the form

M, =U.S, V], (3.32)

where S, is a non-negative diagonal matrix with the singular
values of M, 5;(z) (i = 1,...,N), on the diagonal, and U, and
V. are unitary matrices [as in Sec. Il A we include possibly
vanishing singular values among s;(z), so that S,, U, and V,
are always N x N matrices]. Using the invariance of trace
under similarity transforms, we obtain tr (K| Y=1tr (Ky h=
tr[SZ 4+ (g1 — in)(g2 — in)]~". Given this equality, it is not
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hard to see that Egs. (3.30) cannot be simultaneously satisfied
unless g1(n,z) = g2(n,z) = g(n,2), with g(n,z) satisfying

1
=(g—-intr| =—— |, 3.33
§=le=m [5§+(g—in)2] 339
or as written in the original basis,
. 1
g=(g—intr ; — |- (3.34)
M M; + (g —in)

Noting from Eqgs. (3.26), that the self-energy is thus propor-
tional to the 2N x 2N identity matrix, from Egs. (3.28) and
(3.9) (for J = 0) we obtain

G(n,z2) = G(n+ig(n,2),z;0)

iy M,
T4, T 2

_ M M;+y M; M, +y

— [ s 33s)
MMI+y? MM Ay

where y = g(n,2) — in.

According to Eq. (3.11), for our case of interest we must
solve Eq. (3.34) in the limit n — i0. Note, however, that,
as shown in Appendix A, the noncrossing approximation is,
in general, guaranteed to work only for Im# 5# 0; hence,
the limit n — i0 must be taken after the limit N — oo (as
already pointed out in Sec. II, taking the limits in this order
is important in cases where some of the singular values in S,
vanish in the limit N — o0). For our purposes, it suffices
to let n =ie for some real positive € and take the limit
€ — 0T at the end. In this case one must seek a positive
solution for g(i€,z) in Eq. (3.34); this is because, by definition,
g(n,z) = itrGi1(n,z) = (triG1(n,z; J)); and from Eq. (3.9)
we obtain g(i€,z) = (tr WW’ which for e > Ois
the ensemble average of the trace of a positive definite matrix
and hence positive. Taking the limit N — oo while keeping €
(and hence € + g) positive and nonzero, we define

=1 — | =1
K:(V’Z) Ngnootr |:M7MZT +7/2:| NE;nootr |:S22 + y21|

(3.36)

for y = g + € > 0. We can then rewrite Eq. (3.34) as

y(l = K(y.2)) =€,

withy = g 4 €. Since € and y = g + € are positive, it follows
that 1 — K(y,z) must also be positive. In the limit € — 07
there are two possible situations: (1) g,y — 07, in which case
we must have

(3.37)

lin(} K(y,z) < 1, (3.38)
y—>0*

or lim,_, ¢+ K(y,z) = 1, or (2) the solution for g stays finite
and positive in the limit, while K(y,z) = 1~ as y — g*.
Thus, in the second case g(z) = lim._, ¢+ g(€,z) must satisfy
K(g(z),2) = 1, i.e,

1= lim tr
N—o00

1
|:—SZ2 n g(Z)2i| . (3.39)
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Note further that since /C(y,z) is a decreasing function of y,
in the second case we have K(07,z) > K(g(z),z) =1, i.e.,

lim K(y,z) > 1. (3.40)
y—>0t
Thus, the two possible solutions are realized in complimentary
regions (with a shared boundary) of the complex plane for z,
respectively, given by Egs. (3.38) and (3.40).

Let us substitute the g(z) = 0 solution for the case (3.38)
in Eq. (3.35) and naively set n = ie (and thus y) to zero, to
obtain

Gn=i0",2) = G(n =i0",z;0). (3.41)
From Egs. (3.10) and (3.11), this solution yields (G(z; J)); =
—G'(p=i0t,z) = M;1 = R(z — M)~'L, which is analytic
outside the spectrum of M. Hence, from Eq. (3.7), it yields
p(z) = 0, at least outside the spectrum of M; a more careful
analysis presented in Appendix B, in which we correctly take
thelimit N — ooinEq. (3.17) before takinge — 0%, confirms
that in the region Eq. (3.38), limy_, p(z) always vanishes.

We conclude that the support of limy_ . p(z) is where
Eq. (3.40) holds [which is Eq. (2.20) of Sec. II]; here g(z) is
to be found by solving Eq. (3.39), or equivalently Eq. (2.9)
or Eq. (2.10). In this region, we obtain p(z) by substituting
Eq. (3.35), with the solution of Eq. (3.39), into Egs. (3.17).
This yields Eq. (2.8), which we rewrite here as

1
p(z) = —0: E(2), (3.42)
T
(RL)"'M!
E@Q=tr | ———= |, (3.43)
M. M! + g(2)*

with g(z) given by Eq. (3.39), or equivalently Eq. (2.9).

We now obtain an alternative expression for p(z), equivalent
to Egs. (3.42) and (3.43), which explicitly shows that it depends
only on the singular values of M,. Noting that, from Eq. (2.6),
3.(M,M!) = (RL)"'M!, we can write Eq. (3.43) as

3.(M, M)

E@ =t | —————|. (3.44)

M. M, + g(Z)2
On the other hand, we have
i 2
8.(M_M!
dtr In[M M] + g(2)*] = tr (M - +8°)
' M_M! + g(z)?

= E(2) + 3:[g°(2)], (3.45)

where to write the last term we used Eq. (2.9). Thus, we obtain

E(z) = 0,0(2), (3.46)
9(2) = —g*(2) + tr In[M M + g(2)*], (3.47)

or using the SVD, Eq. (3.32),
9(z) = —g’(@) + tr In[S? + g(2)°] (3.48)

N
=—g(2)’ + % D In[si(2)* +2()’]. (349)

i=1
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Finally, substituting Eq. (3.49) in Eq. (3.46), and using
Eq. (2.10), we obtain Eq. (2.12).

For the special case of M = 0, we have M, = z(RL)™'. If
we let o; to be the singular values of RL, then the singular
values of M, will be given by s;(z) = |z|0i_1. Substituting
this in Eq. (2.10) and multiplying both sides by r? = |z|*, we
obtain Eq. (2.15). We see immediately that g(z), ¢(z), and p(z)
depend only on the radius r = |z|. Similarly, we can rewrite
Eq. (3.49) as

N
o(r) = —g(r) + % Y In[rPo +50)7].

i=1

(3.50)

To find the spectral radius (boundary of the spectrum) ry we
have to solve Eq. (2.15) for r, setting g(r) = 0. This yields
2=+ o= IRL|?, yielding Eq. (2.13). Let us define
the proportion of eigenvalues lying outside a radius » from the
origin by n.(r). To obtain Egs. (2.14) and (2.16), first note
that

1 1 1 9
p(r) = =0:0, p(z) = = V’p(2) = —— —[rd,o(r)],

T 4 dmr Or
(3.51)
where we used the expression of Laplacian, V? = 92 + ay%,
in 2D polar coordinates in the last equality. Using this with
the definition n.(r) =27 f)oo p(ryrdr, we obtain n.(r) =
[£8r¢(r)]fo. For the limit at » — oo, note that for r > rg,
g(r) =0 and we have ¢(r) = >N (2o =2Inr —

i=1
2 Indet(RL), and hence 59,¢(r) — 1 as r — oo. Thus, we

obtain
no(r)=1-— %8,¢(r). (3.52)

Differentiating Eq. (3.50) and using Eq. (2.15) we obtain

N
1 1
0, =2r— _ 3.53
@(r) r ;:1 T olg0 7 (3.53)
and
1< 1
=1-r—S 3.54
n.(r) ry ; R s (3.54)
N
1 o?
2 i
= — _ 3.55
HOR DD v (3.55)

i=1

Using Eq. (2.15) once again we obtain Eq. (2.16). Finally,
using the latter together with Egs. (3.51) and (3.52) yields
Eq. (2.14).

We will prove further general properties for the eigenvalue
density for M = 0. Let us first define

a—k
Ini(g.r) = <—(g2 g >a (3.56)
and
1 N
(floN, = Jim ; f(). (3.57)

[We assume o; have alimit density, p, (o), such that ( f (o)), =
fooo f(o)p,(0)do is well defined for f(o) with sufficiently
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fast decay at infinity. Note that since we assumed that
[(RL)™!|| = (min; 0;)~" = O(1), this density has no measure
at o = 0 and hence the averages in Eq. (3.56) are nonsingular
for n,k > 0. Also, (f(0)), is finite as long as f(o) = 0(c?)
as 0 — 00, as we are assuming that the |RL|r = O(1) and
limy_, o ||RL||%> = (6?),.] First, we obtain general expres-
sions for p(r = 0) and p(r = ry), with rg given by Eq. (2.13).
From Eq. (2.14), np(r) = —Bg(;g), which using Eq. (2.15),
reexpressed as I} o(g,r) = 1, we can write as

3

I,

) = o halgr)

T T I T e
2

(3.58)

%)
s
~

Using the facts thatat r =0, g =1 and at r = rp, g = 0 we
obtain

1 h(1,0) 1

o L

p(r=0) = T ho(.0) 7 (07 )os (3.59)
1500 1 (0%,

ik 7 ho(0,r0) 7 (0%, (3.60)

Using the fact that o* and o2 are anticorrelated and that
0% = o%0 72, we see that (02), < (6%)y(c2), Or

p(r =ro) < p(r =0), (3.61)
with equality if and only if p(o) is deterministic, i.e., a §
function. This can happen if all but an o(1) fraction of the o;’s
have the same limit as N — o0; in that case the eigenvalue
distribution is given by the circular law. More generally, we can
prove that p(r) is a decreasing function of r for any choice of
L and R (with M = 0). Using 42 = 2r jf;f;;, and Eq. (3.58)
we obtain

db

dp(r) oy d(r2)120 b gy

dr 1220

, (3.62)

3 AgH 9 _ 9 3
" awy t 50 5 = a0 — TPy and
n,k

g = —nly1k and 2k a(rZ) = —nl,4 k+2 [we drop the explicit
(g,r) dependence of I, ;’s when convenient], we find

and using d(‘fz) =

dp(r) _ 122,013,4 - 212,2132,013,2 + 122,213,0‘ (3.63)
dr 12,0
Defining
((g2+ﬁf2 7)2 )
(fo), = —F (3.64)
(e ls
[(f(0)). is a bona fide expectation operator] we can write

dp(r) ot \ A U
= —4 _ -
dr d |:< Py @ +o-2r2/ A

1 / —2\72
{erem), o]

(3.65)
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or
dp(r)

0.—2
= —4r CoV' | 5————,072
dr g2+ o722
/ 1 -
- (O’_2>GCOV/ [m,a 21“ s (366)

where Cov'[ f,g] = fg —{(f)
(-)... Now since w and o~

( g)’ is the covariance under
2 are both strictly decreasing
functions of o (since g > 0 for r < rg), while m is a
strictly increasing function of o (forr > 0), the first covariance
on the right-hand side of Eq. (3.66) is positive, while the second
one is negative, and, therefore,

dp(r)
dr

This slope is zero at r = 0 and strictly negative for » > 0 as
long as Var[o] > 0 (again when Var[oc] = 0 we obtain the
circular law). At r = ry we obtain

<O0. (3.67)

4
p'(ro) = —— (o7, (o2, (o), — 1)
ro

4 (0%)5 2 6 42
= —%W(W )o(07)e — (O )g)-
The curvature of p(r) at zero can also be evaluated by taking
the limit » — O of the bracket in Eq. (3.66), noting that g — 1
as r — 0. We obtain

(3.68)

o Var[o 2]
—4Var'[oc 7] = -4——— < 0.

p'(r=0)= )

(3.69)

4. DERIVATION OF THE FORMULA FOR THE AVERAGE
NORM SQUARED

In this section, we focus on the dynamics governed by the
matrix A = M 4+ LJR, according to Eq. (2.2), and derive
the general formulas presented in Sec. II B. We first consider
the system’s response to an impulse input, I(¢) = x¢8(¢), at
t = 0, before which we assume the system was at rest in its
fixed point x = 0. We assume x = 0 is a stable fixed point,
i.e., all eigenvalues of —y1 + A have negative real parts, or
equivalently, all eigenvalues of A have real parts less than
y [more precisely, we assume that as N — oo, this will be
the case almost surely, i.e., for any typical realization of J;
in particular, the vertical line of z’s with real part y must
be to the right of the support of p(z), the average eigenvalue
density for A, as found by solving Eq. (2.5)]. This means that
x(t) decays exponentially as t — 00, and therefore its Fourier
transform, X(w) = % e “'x(1)dt = [;° e ' “'x(1)dt, is well
defined. Fourier transformation of Eq. (2. 2) with I(z) = x¢5(¢)
yields iwX(w) = (—y + A)X(w) + Xo. Solving algebraically
for %(w), we obtain X(w) = (y +iw — A)~'Xy, or using
Egs. (3.3) and (3.4), %(w) = R™'G(y +iw;J)L™'x. The
inverse Fourier transform, x(¢) = ffooo et ‘”i(w)d—;’, then yields

*® dw
X([)Z/ E

Our goal is to study the statistics of x(¢) (e.g., its moments)
under the distribution Eq. (3.2). Equation (4.1) allows us
to reduce this task to the calculation of various moments

E"RIG(y +iw; J)L %y, (4.1)
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of G(z;J) and its adjoint, and these can be found using
the diagrammatic technique. Note that, in general, these
moments involve not only the statistics of the eigenvalues,
but also that of the eigenvectors of A = M 4 LJR; this can
be seen from the spectral representation R~'G(z; J)L™! =
(z—A)'=V(z—A)"'V~!, where A is a diagonal matrix
of the eigenvalues of A, and V is the matrix whose columns
are the eigenvectors of A. Here we look at the simplest
interesting statistic involving the eigenvectors: the average
square norm of the state vector, namely, (||x(2)||?);. As we
discussed in Sec. IIB, its study is also motivated by the
fact that transient amplification due to non-normality of A
manifests itself in the transient growth of ||x(¢)||> = x(1)"x(?).
With a slight generalization, we derive a formula for the
average of a general quadratic function x(¢)"Bx(¢), where
B is any symmetric matrix; the norm squared corresponds
to B =1. Using x(t)' = x(t)! [x(¢) is real], the identity
x! Bx = Tr(Bxx'), and Eq. (4.1), we obtain

dw d
x(1)"Bx(t) = / / 2‘: 2‘;2 it @1—)

X Tr[By G(y +iwy; J)C, Gl(y +iwn; J)],
4.2)

where we defined C, = L’lxox(T)L’Jr and B, = R-TBR™".
Using Eq. (3.11) and G'(z;J) = —lim,_ o+ G'*(n,2; J),
and the 2 x 2 matrices m” defined in Eq. (3.20),
we can rewrite the trace in Eq. (4.2) as
Tr(n?® B, G(0,z;; J)7' ® C, G(0,25; J)], with
zi =Y +iw;, where now the trace is performed over
2N x 2N matrices. Averaging over J, we then obtain
(X(t) Bx(1)); = // dw, da)2 PUCIRY
o 2w
x F(y +iory +io;Bxx;), (4.3)

where, for general matrix arguments B and C, we define

F(z1,22; B,C) = (Tr[B G(0,21; J)C G(0,22; J)]); . (4.4)
with

B=7n>®B,, B.=R 'BR7', 4.5)

c=r'®cC, c =L"'cL (4.6)

Before proceeding to the calculation of F(z1,z2; B,C)
using the diagrammatic technique, we also express the other
quantities presented in Sec. IIB in terms of F(y + iw,y +
iw; B,C), with appropriate B’s and C’s. First we obtain the
desired expression for the matrix power spectrum, Eq. (2.27),
of the steady-state response to a temporally white noisy input,
I(z), with covariance Eq. (2.26). Using the Fourier transform
of Eq. (2.2), and following similar steps to those leading to
Eq. (4.1), we can write the steady-state solution for x(¢) as in
Eq. (4.1) with x( replaced with the Fourier transform of the
input, i(w). Using this and exploiting x;(#) = xj(tg) we can
write (after averaging over the input noise)

dw, d
Xl(tl)x (Q)—/./. 21 602 mwl_nzszij(a)l,a)g),

4.7
2 271 @.7)
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where the Fourier-domain covariance matrix, K(w;,w») =
X(w)X(wy)T, is given by
K(wi,) = R7'G(y +iwi; J)
x L7 CYw1,00) LG (y +iwy; HRTT. (4.8)
Here the bars indicate averaging over the input noise distribu-

tion, and we defined CY(w,w,) = L(w))I(w,)!. On the other
hand, the Fourier transform of Eq. (2.26) yields

Clw,) = Hw)l(w) = 278(w; — w2)CT, (4.9)

where we also exploited T(w) =1;(—w) for a real I().
Substituting Eq. (4.9) into Eqgs. (4.7) and (4.8) we obtain

- do .
X ()X, (1) = f %e”"(” X (), (4.10)

where
C¥w) =R~ TGy +iw; HR7T.

A.11)

'Gly +iw; JHL7IC'L

Noting that Eq. (4.10) expresses the covariance of the response
as an inverse Fourier transform, we see that C*(w) is indeed
the power spectrum of the response, as defined in Eq. (2.27).
Finally note that the element, C;;, of any matrix can be
expressed as Tr(e;e]C), where e; are the unit basis vectors
(i.e., vectors whose ath component is §;,). Using this trick
with Eq. (4.11), and following the steps leading from Eq. (4.2)
to Eq. (4.3), we see that after ensemble averaging, (Ci"j(a))) J
can be written in the form

(CH(), = Fly +ioy +iose;e ,ch,

where F was defined by Eqgs. (4.4)—(4.6).

Next, consider the system Eq. (2.2) being driven by a
sinusoidal input I(t) = Ipv/2 cos wt [the factor of +/2 serves
to normalize the time average of (v/2 cos wt)? to one], and
consider the steady-state response, which will also oscillate at
frequency w. Decomposing the input, I(¢), and the steady-state
response, X,(?), into their positive and negative frequency
components (proportional to /" and e~/ , respectively), from
Eq. (2.2) we obtain

4.12)

Xo(1) = V2R 'Re[e!” G(y + iw; J)IL'T,. (4.13)

Thus, the norm squared of the steady-state response, || x(¢)> =
x(1)'x(t), will have a zero frequency component, plus compo-
nents oscillating at +2w. Averaging over time Kkills the latter,
leaving the zero frequency component intact, yielding

X, (0%,(0) = L' GY(z; HRTTR™' G(z: /)L™
=Tr[RTR'G(z; )mGl(z; ))],  (4.14)

where z = y + iw, the bar indicates temporal averaging, and
we defined o = L‘llOI{)L_T. Generalizing to X, (#)"BX, (),
averaging over the ensemble, and following the steps leading
from Eq. (4.2) to Eq. (4.3), we obtain

(Xo()TBX, (1)), = F(y +iw.y +iw; BII),  (4.15)

where F is given by Egs. (4.4)—(4.6). Comparing Eq. (4.15)
with Eq. (4.12), we also obtain

(Xo(1)" BXoy(1))y = Tr[B(CH(@)) /], (4.16)
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M1 vy
m,n V3 ! J
1 vy
2.2 =
_ é_rP’V"HZ
Nz mn NCP vz M2
/Jll cee Y1
ladders s s

FIG. 12. Contributions to Eq. (4.17) in the noncrossing approx-
imation. The first line shows Eq. (4.17) written using the expansion
Eq. (3.22). The diagram shows the contribution of the mth and nth
terms in the expansion for two Green’s functions, respectively. Thus,
the top (bottom) solid line contains m (n) factors of J, shown by
dashed lines. In the large N limit, averaging each summand over
J boils down to summing all noncrossing pairings (NCPs) of the
dashed lines. The second row shows a specific noncrossing pairing
for the diagram shown in the first line. Finally, summing over all
m and n and all NCPs is equivalent to replacing all solid lines
[representing G(n);,z;; J = 0)] with thick solid lines representing the
noncrossing average Green’s function, G(n;,z;) [calculated according
to Egs. (3.26)—(3.28)], and summing over all NCPs with every pairing
connecting the straight lines on top and bottom (and not each to itself).
This procedure yields the ladder diagrams, the sum over which is
shown in the third line.

which is Eq. (2.31) of Sec. II, it being understood that C! in
Eq. (4.12) is replaced with IpI, as in Eq. (4.15).

Now that we have expressed all our quantities of interest
in terms of the kernel F as defined in Eq. (4.4), our task boils
down to performing the average over J in Eq. (4.4) to obtain
a closed formula for F with general arguments B and C. To
this end, we now proceed to calculate the more general object,

Fulvz;uzvl (1, 2) = (Gulvl (L J)Guzuz(z; ]))Jv (417)

using the diagrammatic technique. Here we adopted the
abbreviated notation (1) = (,z;) and (2) = (12,z,) for the
function arguments and pu; = («;,a;) (similarly for v;) for
indices in the 2 N-dimensional space (as in Sec. III, o, 8, . . .,
anda,b, .. .,denote indices in the 2 and N -dimensional spaces,
respectively). Once we have calculated F),,,.,,,, (1;2), we can
obtain F(zy,z2; B,C), with the appropriate B and C, via

f(Z],Zz; B’C) = BVZMF/LIUZ;MZVI (0721;07Z2)Cv1/12’ (418)

where all indices are summed over and B and C were defined
in Egs. (4.5) and (4.6).

As before, we start by using the expansion Eq. (3.22)
for the two Green’s functions in Eq. (4.17). This is shown
diagrammatically in the first line of Fig. 12, for the contribution
of mth and nth terms in the expansion of the first and the
second Green’s function, respectively. As before, for large
N, averaging over J entails summing the contribution of all
noncrossing pairings. This is indicated in the second line of
Fig. 12. Finally, the third line of Fig. 12 shows that summing
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M1 V] H1 Pl AL U1
Z = + D
ladders va o p2 V2 Az P2 2
P1 A1 -~ -
D = + + 4 o
A2 P2

Y

D - + D

FIG. 13. The first row is the diagrammatic representation of Eqs.
(4.19)—(4.21). In the last term, p’s and A’s are summed over. It shows
the sum of all ladder diagrams contributing to Eq. (4.17) (i.e., the last
line of Fig. 12) in terms of D, which is defined in the second row. The
first term on the right side of the first row equation (the ladder with
zero rungs) is the disconnected average Eq. (4.20); it corresponds to
taking the average of each Green’s function in Eq. (4.17) separately
and then multiplying. The last row shows an iterative form of the
equation in the second row, which can be solved to give the expression
Egs. (4.23) and (4.26) for D.

over all m’s and n’s and all noncrossing pairings is equivalent to
replacing all solid lines with thick solid lines representing the
average Green’s function in the noncrossing approximation,
G(n;,z;) [defined diagrammatically in the third line of Fig. 11,
and given by Eq. (3.35) as we found in the previous section],
and summing over all noncrossing pairings with every pairing
connecting the thick arrow lines on top and bottom (and not
each to itself). This procedure yields a sum over all ladder
diagrams with different numbers of rungs, as shown in the
third line of Fig. 12.

As shown in the first row of Fig. 13, the sum of all ladder
diagrams can be written as a sum

F=F"+F", (4.19)

where
F i (152) = Gy (1)G 0, (2)

is the disconnected average of the two Green’s functions, and
£ vsiaw (13 2) 1s the sum of ladder diagrams in which the two
Green’s functions are connected by at least one wavy line. The
latter can be written in the form
F? (1;2)

K1V

= Gn (DG, 0 (DD ;o2 (13 2)G3,0, (DG, (2), (4.21)

where all repeated indices are summed over and D is given by
the sum of all diagrams in the second row of Fig. 13.
To calculate D, it helps to first rewrite Eq. (3.21) as

(4.20)

o, 1 : r s
(Jabﬁ‘lc?:is)‘/ = N Z (ﬂaﬁ(sad) Urls (nyﬁ(SCb)’

r,s=1

4.22)

where

012820-23



AHMADIAN, FUMAROLA, AND MILLER

FIG. 14. The contribution to D57 (1;2) from the second term
in the series shown in the second row of Fig. 13, in more detail.
The covariance of J in the form Eq. (4.22) is used to write this
expression in a more manageable form. The repeated indices, r,7,u,s,
are summed over 1 and 2. The matrices inside the loop multiply
each other in cyclic order, giving rise to the trace Tr (G(2)7'G(1)7").
The whole diagram gives + Y, (7" @ D% [0'T1%0'] (7' ® 44
where the “polarization matrix” I17, was defined in Eq. (4.25).

is the first Pauli matrix. This helps us because in the expansion
of Fig. 13, the two factors in Eq. (3.21) involving 7" and 7*
decouple and get absorbed in adjacent loops, or contribute to
form factors in the left or right ends of the ladder diagrams.
This is demonstrated in Fig. 14 for the second term in the series
expansion of D shown in the second line of Fig. 13. Extending
this similarly to all the terms in that expansion, we obtain

Dypin(1:2) = DegP(1:2)

1 2
= 2 (Tisbua) Drs(1:2) () bn). (4.23)

rs=1

where i = (a,a), v =(B,b), A =(y,c), p = (8,d), and we
defined the 2 x 2 matrices,

D1;2)=0'+o'Me' +.- =o' (I7c'), (424)
n=0

and the “polarization matrix”,
7 (1;2) = r [r"G(DH*G(2)] = tr [G™ (DG (2)].

Here, as before, the trace was performed over the 2N-
dimensional space, and we used Eq. (3.20) to write the last
form of IT°. Summing the geometric series in Eq. (4.24) we
obtain

(4.25)

D(1;2) = o'[1,,, — 1°(1;2)0 171 (4.26)
The 2 x 2 matrix inversion yields
D(1;2) = !
(1 = T)(1 = I5;) — MY, I3,
x (1 ?21_2[21 ! _n;”), 4.27)

where all IT”’s have arguments (1;2) = (91,21; 12,22) Which
were suppressed for clarity.

Going back to Eq. (4.18), we can also break up
F(z1,22; B,C) into a disconnected part and a connected part
mirroring the decomposition Egs. (4.19)-(4.21),

F(z1,22; B,C) = Fz1,22; B,C) + AF(z1,22; B,C),
(4.28)
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where F°(z1,22; B,C) and AF(z,22; B,C) are defined as in

Eq. (4.18), but with F),,,.,,,, on the right side replaced with
O . .

F g, a0d FJ respegtwely. Using Eqgs. (4.20) and

(4.21) and (4.23), we then obtain

F%z1,22; B,C) = Tr[BG(0,21)CG(0,25)]

= Tr[B,G”'(0,2)C.G"(0,22)],  (4.29)

and
AF(z1,22; B,C)

1
=+ D Tr[B.G¥ (0.2)G(0.22)]

x Dy5(0,2130,22) Tr[G*1(0,21)C.G"(0,22)], (4.30)

where r and s are summed over {1,2}.

According to Eq. (4.3), we are interested in z; = y + iw;
(i =1,2) for arbitrary real w;. As we mentioned before
Eq. (4.1), these trace a vertical line in the complex plane that
is entirely to the right of the support of the average eigenvalue
density, p(z), of A, i.e., they are in the region where the the
valid solution of Eq. (3.34) is the trivial g(0,z) = 0. In this
case, we have Eq. (3.41), and for n — i0", from Eq. (3.10)
(replacing A with M, corresponding to J = 0) we have

o M!
G(0,z;) = — “ . 431
(0,2) (Mz_il 0 ) (4.31)
Using this in Egs. (4.29) and (4.30), we obtain
Fz1,22:B.C) = Tr (B,M'C, M), (4.32)
and
AF(z1,z22; B,C)
= tr[B.G*'(0,21)G"%(0,22)]1D12(0,21; 0,22)
x Tr[G*(0,21)C,G2(0,22)]. (4.33)

Using the definitions Eq. (2.6) and Eqs. (4.5) and (4.6) we can
simplify Eq. (4.32) to

1 1
F%z1,22:B,C) = Tr (3 c

— Zz—MT>. (4.34)

From Eqgs. (4.25) and (4.31) we see that (for z; of interest
and for n; going to zero) IT"" = 0 and I1'> = I1?!, and from
Eq. (4.27) we obtain

1
1 —T11%,(0,z1; 0,z2)
1

= . (435
1 —tr[G*(0,21)G"(0,22)] (339

Substituting this in Eq. (4.33) and using Eq. (4.31) once again,
we finally obtain

D15(0,21;0,22) =

tr (BRM;]lM;j)Tr (M'C.mz")

AF(z1.22: B,.C) = —
1 —tr(M;' M)

’
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and after simplification using Egs. (2.6) and (4.5) and (4.6),
AF(z1,22; B,C)

(B LL

B l—tr(RTR—LLT

)Tr(RTR—MCZQ_lMT)

. (4.36)

)

The general formulas of Sec. II B readily follow. Equations
(2.21)—(2.24), with CT replaced with XoX;, for the case of
response to an impulse input follow from Eqgs. (4.3), (4.28),
(4.34), and (4.36), respectively. Equations (2.28)—(2.30) [with
C§ and AC* defined in Eqgs. (2.23) and (2.24)] for the power
spectrum of the response to a temporally white noisy input,
are similarly obtained from Eq. (4.12) by using Eqs. (4.28),
(4.34), and (4.36), after setting B = e;e], C = Cland z; =
73 = ¥ + i [with the traces involving B = e;e; turned into
matrices in Eqgs. (2.28)-(2.30), using Tr (e;e] X) = X;;]. The
result Eq. (2.31) for the steady-state response to a sinusoidal
input was already derived in Eq. (4.16).

We see that according to Egs. (4.3) and (4.28),

(x()'BX(1)), = [X(t) Bx()]s=0 + Afa(),

where the two terms on the right-hand side are obtained by
replacing F(-,-; B) in Eq. (4.3) with Egs. (4.34) and (4.36),
respectively. The integrals over w; and w, decouple for the
first term yielding the expected result for J = 0,

(4.37)

[x(1)" Bx(t)];=0 = e~ *" Tr (Be'™ xox], oM )

i —
_ XT et( y+M) Bet( y+M)XO

(4.38)

Unlike the J = O contribution, it is not possible to perform
the double Fourier transform, Eq. (4.3), needed for obtaining
A fp(t) for arbitrary M, L, and R. In the next section, we will
analytically calculate this for some special examples of M,
with L and R proportional to the identity matrix (i.e., for iid
quenched randomness).

5. CALCULATIONS FOR SPECIFIC EXAMPLES OF M

In this section we give the detailed calculations of the
explicit expressions for the spectral density Eq. (2.8), the power
spectrum Eq. (2.31), and the average squared norm Eqs. (2.21)
and (2.25), for the specific examples of M, L, and R presented
in Sec. IIC.

In the examples worked out in Secs. VA and V B, both
R and L are proportional to the identity matrix; we take
L =1 and R = o1. Furthermore, for such examples we do
the calculations by choosing the unit of time such that o = 1
[notice that given Eq. (2.2), the elements of A and M have
dimensions of frequency]; then at the end of our calculations
using the replacements t — to, z — z/o,y — y/o, M —
M/o, and p — o?p (with the latter applying to both the
eigenvalue density and the power spectral density), we obtain
the result for general o. The eigenvalue density and the norm
squared ||x|| are invariant with respect to unitary transforms,
and, for L and R proportional to the identity, so is the
distribution of the random part of A, Eq. (3.2). Thus, by
effecting a unitary transform M — U'MU, we can assume
M is already in its Schur form, Eq. (2.40), without loss of
generality.
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A. Single feedforward chain of length N: M;; = w §;11,; — yJ;;
We start with the example in Sec. I C 1, where M is

0 w O

0O 0 w

M=T= 5.1

or M;; = w ;4. First we calculate the eigenvalue density.
According to Egs. (2.8) and (2.9), in order to calculate
the spectral density, we need to calculate first the inverse
of MZMZT +g2=@—-M(iz- M) + g2 (remember that we
have set 0 = 1, as we explained in the beginning of the
section). To this end, notice that K;; = [(z — M)(z — M = ;=
Qij — |w|? din8jn, where

Qi = (zI* + lwH)s;; — (5.2)

As the difference (z — M)(z — M)! — Q = —|w|2eNe; is sin-
gle rank, we can use the Woodbury formula for matrix
inversion to write

1 1 N 1 ;1
= e e
K+g 0+g 0Q0+g " "0+¢
1 (5.3)
X , .

lw|=2 — €1(Q + g*) e,
where €| = (0, ...,0,1). [The only conditions for the validity
of Eq. (5.3) is that the factor in parentheses is not singular,
ie. el (Q+g») e, # |w|?; we consider the validity of this
condition below.] Since Q is Toeplitz and Hermitian, it can be
diagonalized easily. Using standard methods, we find that the

eigenvalues and eigenvectors of Q, satisfying Qv, = A,v,,
are given by

wZdiy1,j — Wi j41.

ign |2 Tn
A = lz] = wle'™ |7, ¢, = Nrl 5.4
) 2 wz ir
S= — = ing,J, 5.5
v; Nl (wZ) sin @, j (5.5)

forn =1,...,N. The eigenvectors are orthonormal vi,vm =
d.m and we have the spectral representation

1 N 1
—_— = vn—vi. (5.6)
0+¢ § A+ 82
Using Egs. (5.4)—(5.6) in Eq. (5.3) we obtain
1 _ 312(5'2.1)
og
tr——=Lgy)+———-7-—"7-"-—, 5.7
K+g2 1(8:2) N |w|=2 = Ix(g,2) ©7)
where we defined
1S 1
Li(g,2) =t = — 5.8
(g =t o Ngk e (5.8)
N .
1 1 2sin® ¢,
I(g.2) = e, = (5.9)

R S

In writing the numerator of the last term in Eq. (5.7),
we used Eqs. (5 5) and (5.6) to write Tr(=— Q+g2 eNeN Q+g2) =

25 gy _3L@D Y the N — 00

2 _
ol = N+1 > Gutgd? = " T

I Q+g
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limit, the sums in Eqgs. (5.8) and (5.9) can be approximated by
the integrals

1(g.2) /27[ ! 49 (5.10)
,2) = . —, .
PEET L TRl = Twle?P + g2 22
2 s02
2sin” ¢ do
L(g.z =/ 4 —. 5.11
XED = f e wle T g 2n G40
Some elementary contour integration then yields
1(.2) = [z + [’ + g% — 4w’|zP17"2, (5.12)
|z* + lw]* + ¢* — N1(g,2)”"
I(g,2) = . 5.13
2(8.2) IREEE (5.13)

In particular, we see that 15(0,z) = min(|w|~2,|z]72), so that
the condition for the validity of Eq. (5.3) would be violated
for |z| < |w]|, if g turns out to be zero. However, note that
I>(g,z) is a decreasing function of g2, so for finite g* > 0, the
denominator in Eq. (5.7) is always positive (as is its numerator,
for the same reason). Thus, if we follow the correct procedure
of Egs. (2.19) and (2.20), taking the N — oo limit before
sending g? to zero, we are justified in using Egs. (5.3) and
(5.7). Furthermore, for g2 > ( the second term in Eq. (5.7)
is O(N~') and should be neglected. Solving Eq. (2.9) [with
left-hand side correctly interpreted as Eq. (2.19)], which now
takes the form 7;(g,z) = 1, yields

g2 = —lz* — [w* + V4|w[2|z]? — (5.14)
This is positive if and only if
Vw2 =1 < [zl < VIwP + 1, (5.15)

which after the proper rescaling yields Eq. (2.36) for general o.
Note that Eq. (5.15) is precisely the region given by Eq. (2.20),
which in the present case reads /;(0,z) > 1. It is instructive
to compare this result with what we would obtain by naively
using Eq. (2.5), i.e., tr(K~!) > 1, wherein g is set to zero
before taking the N — oo limit; as we now show, that only
yields the right inequality in Eq. (5.15). To see this, first note
that for |w| > |z|, we can use Eq. (5.7) even for g = 0 (since
the denominator of the last term does not vanish), which yields
tr[(M,M)™1] = tr (K~!) = 1,(0,2) + o(1), and by Eq. (2.5),
the right inequality in Eq. (5.15). For |z| < |w|, however, we
cannot set g =0 in Eq. (5.7). In fact, when |z| < |w], the
matrix z — M has an exponentially small singular value; to see
this, note that the vector u with components u; = (£)~! sat-
isfies (z — M)u = w(£)Vey, so that ||(z — M)ul| = [w||£|",
and since spyin(z — M) < =Ml 4pnq [la|| = 1, it follows that

([all

Smin(z — M) < |w|| |V, which is O(e=) for |z| < |w]. For

large enough N, this singular value alone suffices to make

Eq. (2.11) [equivalent to Eq. (2. 5)] hold for any |z] < |w|, as
%smm(z) diverges despite its + prefactor

Let us now calculate the elgenvalue density in the annulus

Eq. (5.15). In order to use Eq. (2.8), we first calculate

z-Mb M
—ZZ—trm, (516)
8z
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where we used Eq. (2.9) to write the last expression. To
obtain tr %}zﬂ’ we again use Eq. (5.3). In the region
Eq. (5.15), the contribution of the second term in Eq. (5.3)
is again suppressed by 1/N, and from Eqs (5 1) and (5 6)

we have tr MT[Q + ¢?17' = w1 3L (X1 ") ,’14'1)x gl
A straightforward calculation using Eq. (5.5) (and the or-
thonormality of v,) yields Zjv 11 vioi T = (ij)l/2 COS @,.
Using this and approximating the sum over n with an integral,
we obtain

o)
tr| ——
0 + g(z)?

_ wllzl /2”
4 0 ||Z|—

1
= 2—2{[|z|2 + lwl* + g(2)*111(g(2),2) — 1}.

cos ¢ do
lwle?|? + g(2)? 27

(5.17)

Using Eq. (5.17) with I;(g(z),z) =1 [true in the region
Eq. (5.15)], differentiating Eq. (5.16) with respect to 7, and
substituting in Eq. (2.8), we finally obtain

2
@) =~ [1 N Ll — } (5.18)
T VAlw?|z]2+ 1
for z in the region Eq. (5.15). After the proper rescaling this
yields Eq. (2.37).

We now turn to the calculation of (||x(¢)||?);, using (2.25).
To calculate the trace in the denominator of Eq. (2.25), first
note that for Eq. (5.1) the expansion (z — M)~! = Zf,v:_ol Z’%
terminates and is exact, yielding

- M],,_,. ! <%)

for j > i, and zero otherwise. Turning the sums in the trace
into a sum over the nonzero diagonals of Eq. (5.19) we obtain

1 n
r <22_—MTZ1 ):a’;(l——)q . (5.20)

where g = |w|?/(Z2z1) and z; = y + iw;. The condition of
stability of Eq. (2.2) requires the entire spectrum of —y1 +
A= —yl1+ M+ J to be to the left of the imaginary axis.
By Eq. (5.15), this requires y > /|w|? + 1 > |w|. It follows
that |g| < 1, and therefore the geometric series Eq. (5.20)
converges as N — oo. Summing the series and retaining terms
of leading order as N — oo, we obtain

( 1 1 ) 1

tr | - : = - )
LMz —-M Dz — |wl?
If we set the initial condition Xy in Egs. (2.25) [or the input
amplitude Iy in Eq. (2.31)] to e, =(0,...,0,1)" and use
Eq. (5.19), we find that the numerator in Eq. (2.25) is also
given by the right hand side of Eq. (5.21). Using this and
Egs. (5.21), we obtain

(5.19)

(5.21)

1
—|wl> =1

for the integrand of Eq. (2.25), which we denoted by F(z,22),
with z; = y +iw; (i = 1,2). By comparing the integrand of

F(z1,22) = - (5.22)
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Eq. (2.25) with the right hand side of Eq. (2.33), we see that to
obtain the total power spectrum for the input amplitude Iy =
16(0, ...,0,1)", we need to multiply Eq. (5.22) by I = ||Io|?
and substitute z; = zo = y + iw. With the proper rescaling,
this yields Eq. (2.39) for general o. To obtain the formula for
(Ix(@)]1?),. we substitute Eq. (5.22) with z; = y + iw; for the
integrand of Eq. (2.25). Changing the integration variables by
w) =R+ w/2 and w, = 2 — w/2, we obtain

(X)) / 4o jro [ 422 :
= — —_—
/ o 2T LA (y+iw/2)? — |wf—1

(5.23)

1 f dw e
2) 2% J(y +iw/2? —wP—1
Finally consulting a table of Laplace transforms [56], we obtain

(IXOIP)y = e L2y |wP + 1), (& > 0),

where Ip(x) is the Oth modified Bessel function. Implementing
the rescalings t — to, y — y /o, and w — w/o, we obtain
Eq. (2.38).

(5.24)

B. N/2 feedforward chains of length 2

Here we carry out the explicit calculations for the example
of Sec. IIC 2, where M is given by Eq. (2.40) (without loss of
generality, we assume M has its Schur form), using formulas
(2.8) and (2.9) for the spectral density and Eq. (2.25) for
(Ix(@)|1?),. First we calculate the eigenvalue density. From
Eq. (2.40), K = MZMZT = (z — M)(z — M) [we are setting
L =R =1 in Eq. (2.6); see the comments at the beginning
of this section] is a block-diagonal matrix with 2 x 2 diagonal
blocks, with the bth block (b =1, ...,N/2) given by

(Z —wb)( 4 0) _ (IZI2 + Jwp|? —wa>

0 z J\—m z) \ -z 2> )
(5.25)

where wy, is the corresponding Schur weight in Eq. (2.40).

Likewise, (K + g?)~! whose trace appears in Eqgs. (2.9) is

given by a block-diagonal matrix with diagonal blocks

1 <|z|2 + g wpZ )
(zI2 4 g0 + |wp2g2 \ wpz 21> + g% + [wy|?)”

Taking the normalized trace, we thus obtain

|Z|2-|-g2-|-%|wb|2 ’ (5.26)
(121> + &% + [ws*8* [,

tr(K+g) ' = <

where (), means averaging over the N/2 blocks, i.e.,
(f(wp))p = NL/2 Ziv:/% Sf(wp).

Let us first calculate the support boundary of p(z). As
discussed in Sec. I A, when (for |z| # 0) all singular values of
M, = z — M are bounded from below as N — oo, the support
is correctly given by Eq. (2.5) [we discuss cases in which some
s;(z) are o(1) further below]. Setting ¢ = 0 in Eq. (5.26), and
substituting in Eq. (2.5), this yields

<oK'= z172 + u?z 4, (5.27)
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where we defined u? = J(|w,|*), = tr (MTM). It follows that
the support is the disk |z| < ry, where

11
r§=§+ R

The replacements u — w/o and ro — ro/o then yield
Eq. (2.44).

From Egs. (2.9) and (5.26), within the support, g2(z) is
found by solving the equation

(5.28)

1 22+ g%+ 3lwl?
SNE Y L R 1
K+zg (27 + 897 + lwp|g* [

while for |z| > ryp we have g(z) = 0. Itis clear from Eq. (5.29)
that g%(z) depends on z and 7 only through |z| = 7.

From Eq. (2.8), within its support the eigenvalue density is
given by

mp(z) = %tr [MI(K +gH)7"]

19 it 2y-1
=1- a—?tr [M'(K 4+ g°)" '], (5.30)
where we are now using the short-hand g? = g%(|z|) [the
solutionlof Eq. (5.29)], and in writing the second line we
used M! =7 — M' and Eq. (5.29). From Egs. (2.40) and
(5.26) we see that MT(K + g*)~! has the same block-diagonal
structure as Eq. (2.40), and a short calculation shows that
tr [MT(K + gz)’l] = 7I5(|z]), where we defined

(5.31)

1) = 3lws?
TN+ g0PP + PR [

I5(r) is manifestly positive (assuming some wj are nonzero),
while when g2 > 0, from Eq. (5.29) we have (r) < 1, and
thus,

0< L)< 1. (5.32)

; EP oo 50Uz 5, 0f ()
Replacing this in Eq. (5.30), and using Z=5% = 2r=5~

F)
we obtain

9
r=[z|

1a , )
JTp(Z)ZZB—r[r —r I3(r)]

for r = |z] < ro, and zero otherwise; the spectral density is
rotationally symmetric and depends only on r = |z|. The
advantage of writing the density as a complete derivative is that
it can be immediately integrated to yield n_(r), the proportion
of eigenvalues with modulus smaller than some radius . We
have n_(r) =2x for p(r")r'dr’, which, upon substitution of
Eq. (5.33), yields

n_(ry=ril—Lrl < r).

Likewise, we define n_(r) = 1 — n_(r) to be the proportion of
eigenvalues with modulus larger than r. From these definitions
we have

(5.33)

(5.34)

1 on_(r)

2nr  Or

) 1 9n_(r)
V) == —— =
P 2wr  or

, (5.35)

and from Eqgs. (5.34) and n_(r) =1 —n_(r), after some
manipulation exploiting Eq. (5.29), we obtain

n_(r) = gr)’[1 + L(r)]. (5.36)
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We see that beyond the radius r at which g? vanishes
(which when all w;’s are bounded is r =rp), n_(r) and

o) = —2711—r 8;;; vanish identically, while for smaller r they
are positive.

In cases in which some w;, grow without bound as N — oo,
some singular values, s;(z), of M, = z — M are o(1), and more
care is needed. First, to see this, note that by definition 5i(2)?
are the eigenvalues of the block-diagonal K = MZMZT ; thus,
they come in pairs composed of the eigenvalues of K’s 2 x 2
blocks, given by Eq. (5.25). We denote the pair of eigenvalues
corresponding to block b by s, +(z)?, with the plus and minus
subscripts denoting the larger and smaller singular values,
respectively. The sum s,,(z)> + s,_(z)> and the product
sp1(2)*sp_(z)> are given by the trace and determinant of
Eq. (5.25), ie., by |wp|?> +2|z|* and |z|*, respectively. It
follows that for blocks where the feedforward weight wy, is
O(1), both s;, 1 (z) will be ®(1) for |z| # 0, while for blocks
in which w, — oo as N — oo, we have

52,(2) = lwp|* + O(1) — o0, (5.37)
() ~ 2l = o(1) (5.38)
b= |wp ' :

[Note that as stated after Eq. (2.3) we assume ||M||é =u’ =

(Jwp|?)/2 is O(1), so that at most o(N) number of weights
can be unbounded, and each such wj, can at most be O(+/N).]
If all the w;, are O(1), and hence all singular values are ®(1)
(for |z| # 0), Eq. (5.28) yields the correct support radius as
noted above, and for r < rg, Eq. (5.29) yields a ®(1) solution
for g(r)?, which leads to a ®(1) solution for n_(r) and p(r)
via Egs. (5.36) and (5.35). In cases in which some w,; are
unbounded, however, Eq. (5.28) [derived from Eq. (2.5)]
may not yield the correct support boundary. Such cases are
examples of the highly non-normal cases mentioned in the
general discussion after Eq. (2.12), for which the support
of limy_,» p(z) must be found by using Egs. (2.19) and
(2.20). This is equivalent to solving Eq. (5.29) after the limit
N — oo is taken (assuming g > 0) and then finding where
the solution for g2(|z|) vanishes, which yields the correct
support radius. From Eq. (5.36) this is indeed the radius at
which limy_, o, 7. (r) and hence limy_, o, p(r) vanish as well.
This radius is, in general, smaller than ry as given by Eq. (5.28).

We now calculate p(z) for two specific examples of M
from each group. The first example is that of equal and O(1)
feedforward weights in all blocks, which we denote by w [in
terms of Eq. (2.41), this case corresponds to K = w1]. Here
we can drop the block averages in Eqs. (5.29) and (5.31),
replacing w;, with w. Solving Egs. (5.29) for g2(|z| = r) we
find

gz(r)zl—w—z—rz—i—l 1+ w* +4w?r2. (5.39)
2 2 2 B
Substituting this into Eq. (5.31) and Eq. (5.34) yields
2,2
n.(r)=r’- il . (5.40)
I+ 1+ w* + 4w?r?
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The replacements w — w/o and r — r/o then yield
Eq. (2.45) for general o, and p(r) can be calculated using
Eq. (5.39).

The second case is that of Eq. (2.42). In this case only one
of the blocks has a nonzero Schur weight given by |w;|*> =
Tr(MTM) = Nu?> = O(N), where = O(l) is given by
Eq. (2.43). Equation (5.29) now yields

1= 4 w o8 (sa
- r2+g2 (r2+g2)2+N'u282 r2+g2’ :
or
2,2 2
rte - " . (5.42)
rz _ gz (r2 + g2)2 + Nuzgz

The right hand side of this last equation is /3(r), as follows
from Eq. (5.31); thus, using Eq. (5.42) we can rewrite
Eq. (5.36) as

=g L
B 0)
Let us now solve Eq. (5.42) to find g(r)*>. As noted above,
and in accordance with the general prescription given after
Eq. (2.12), for the purpose of obtaining limy_, . 0(z) we have
to first take the N — oo limit in Eq. (5.41), keeping g > 0
fixed, and only then solve for gZ. Doing so makes the last term
in Eq. (5.41) vanish, and we obtain gz(r) = 1—r2. This is
positive for r < 1 and vanishes at r = 1, the correct support
radius of limy_, o p(z), which is strictly smaller than r( given
by Eq. (5.28). From Eq. (5.43) we obtain n_(r) = g*(r) =
1 — r2. It then follows from Eq. (5.35) that the N — oo limit
of the eigenvalue density is identical with the circular law (the
result for the M = 0), i.e., limy_ o p(r) = % for r <1 and
zero otherwise. With the correct scaling, this yields Eq. (2.46).

Contrary to the general prescription given after Eq. (2.12),
we now solve equations Egs. (5.29), (5.31), and (5.36) for
r > 1, without taking the limit N — oo first. As we will see,
the obtained solution for g(r)z, and by Eqgs. (5.32) and (5.36)
therefore the solutions for n. (r) and p(r), will be nonzero
but o(1) for 1 < r < ry. As discussed in Sec. IIC2, these
finite-size corrections, which, in general, are not trustworthy,
in the present case are in surprisingly good agreement with
simulations for some range of r’s beyond rg(i), but deviate
from the true n.. (r) for larger r (see Fig. 7). At finite N, it can
indeed be checked that Eq. (5.29) has a positive solution for g2
if and only if r < rp, with ry given by Eq. (5.28). Simplifying
Eq. (5.42) yields a cubic equation in g?. However, it turns out
that ignoring the cubic term in g? is harmless for large N; the
quadratic approximation has the positive solution

1 — 272 r2(r2 + ) — ro

(5.43)

1 —r2
2 :

(5.44)

and for all r < ry, corrections to Eq. (5.44) when the cubic
term is reinstated decay faster than the leading contribution
from Eq. (5.44) [nevertheless, we numerically solved the full
cubic equation (5.29) to obtain the black curve in Fig. 7, and
the blue trace in Fig. 6]. First, analyzing Eq. (5.44) we see
that g2(r) is indeed ®(1) only for r < 1, where, as we already
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found, g2(r) = 1 — r*> + o(1). Furthermore, for a fixed r > 1
(such that » — 1 does not vanish as N — 00), the solution for
g(r)is O(N~"). Thus, from Eq. (5.43) we see that Nn_(r), i.e.,
the total number of eigenvalues with modulus larger than r, for
1l <r<rylandr — 1 = ©(1)] is only O(1); the solution for
Nn_(r) is shown in Fig. 7. Correspondingly, from Egs. (5.43)
and (5.35) we see that p(r) is o(1) in this region and vanishes
in the limit N — o0, as already found. Now let us calculate the
total number of eigenvalues lying outside the circle |z| = 1

This is given by Nn_(1). From Eq. (5.44) we find g2(1) = f’

and substituting in Eq. (5.43) we obtain

N_(1)= Nn_(1) =N + 0(1). (5.45)

With the proper rescaling this yields Eq. (2.47) for general
o. Note that, according to Eq. (5.44), g(r) [and hence n_(r)]
remains (N ~1/?) [as opposed to O(N ~1]in a thin boundary
layer outside of width ®(N~!/2) just outside of the circle
lz| = 1.

We now work out the formula for (||x(¢)|%),, Egs. (2.21)—
(2.25), when the initial condition X is the second Schur
vector in block b = a, which we denote by e,; in the Schur
representation, Eq. (2.40), we have e, = (0,1)" (we only write
the components of e,, in block a). To calculate the numerator
in Eq. (2.25), we first calculate (z — 7,)"'e,,, where

0 w,
=0 %)

denotes the ath diagonal 2 x 2 block of Eq. (2.40). Since Ta2 =
0, we have (z — T,)~! = z7! + z72T,, which yields v,(z) =
(z — T,) 'ewr = (wez72,27")". We thus obtain

X ——Xo = Va(22) 0,(21) = L |wa|2.
L-—Mizi—M 2z 3%
(5.46)

On the other hand, we have

1 1
r—
L—Mizi—-M
_ 1 = _ iyl _ -1
= (zTr,..(22 Tb) (z1 — Tp)

2 b
1 2
-+ M. (5.47)
2132 ZIZZ

Substituting Egs. (5.46) and (5.47) in Eq. (2.25), we obtain

2122 + |wa)?
(2122 — (122 + 12’

where we used u? = (Jwp|?)»/2, and we denoted the integrand
of Eq. (2.25) by F(z1,z2) with z; =y +iw; (i = 1,2). By
comparing the integrand of Eq. (2.25) with Eq. (2.33), we see
that substituting z; = zo = y + iw into Eq. (5.48) yields the
total power spectrum, {||X,||2),. After the proper rescalings,
this yields Eq. (2.50) for general o . To obtain (||x(¢)||?) ;, on the
other hand, we should substitute Eq. (5.48) into Eq. (2.21) with
z; = y +iw;. Let us use the change of variables w; = Q + w
and w, = Q — w. Then we have 7,7, = Q2+ (y + iw)?, and

F(z1,20) = (5.48)
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from Eq. (2.21) we obtain

do . .
(Ix®)II*) ;= / ¢ faly +iw), (549
7T
where we defined
dQ Q% +u? + jw,|?
=2 — . 5.50
fulw) f T @ ey O
Let us rewrite the integrand in Eq. (5.50) as
QZ + M2 + |wa|2
(Qz—i—uz -7y )(Qz +u2+r1)
QP +u? +|wu|2[ 1 1 }
N ré+ri QL+ut—r; QLP+ud+r}
(5.51)
where rg was defined in Eq. (5.28) and
ri=rl—-120. (5.52)

One can calculate the integral over €2 in Eq. (5.50) by contour
integration, closing the contour, say, in the upper half of com-
plex plane. The poles of the first and the second terms on the
second line of Eq. (5.51) are located at 2.+ = +ivu* — rg
and Qi+ = £ivu® + rf, respectively. Foru =y +iw (y >
0) the roots falling in the upper half plane are €y 4 and € 4,
independently of w. From their residues we obtain

L wal® | = wal

2
"
7, 2
o+ \/uz—rg \/u2+r12

The integral of Eq. (5.53) in Eq. (5.49) is essentially the
inverse Laplace transform of Eq. (5.53). Consulting a table of
Laplace transforms [56] yields

(Ix(@II%)

fu(u) =

(5.53)

= W —+| “'21(2 t)—i——_ “'21(2;» Dl
—+— ofero re +r? 0

0T
(5.54)

where Jy(x) [1o(x)] is the Oth Bessel function (modified Bessel
function). From Egs. (5.28) and (5.52) it follows that 7§ + r} =

1+ 4u?, and using u?> = (|wy|?)»/2 once again, we obtain

1+C, 1-C, _
(IxO1); = [ Io(2rot) + Jo@@rit) [ e,
(5.55)
where we defined
1 4+ 2|w,|?
c, = 12w (5.56)
14 2(Jwp|?)s

Effecting the proper rescalings we obtain the result for general
o, Eqgs. (2.48) and (2.49).

C. Network with different neural types and independent,
factorizable weights

Here we carry out the explicit calculations for the network
with C neural types presented Sec. I C 2, with M, L, and R
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given by Egs. (2.52)—(2.55). From Egs. (2.6) and (2.52)—(2.55)
we obtain M, = z(RL)™! — suu" and
MM = |z*(RL)? — zsvu" — Zsuv’ + s*wu’,  (5.57)

where we defined v = (RL)™'u. Using the Woodbury matrix
identity we can write

1 1

-  —0-QU——U'p, 5.58
g2+ M. M! ¢-0Uh +UtQU Q. (3
where we defined the N x 2 matrix U = (u,v), and
1
= 5.59
¢ g*+ zI*(RL)~2 (5:39)
p=(*% -3 (5.60)
T\ —zs (e ’

We argue that for g > 0, tr (g2 + MZMZT)’1 =trQ,uptoo(l)
corrections. From Eq. (5.58), for the remainder A(g,z) =
tr(g? + M, M)~' — tr O, we obtain

1 UtQ?u
Ag,))=—-Tr | ———— |, 5.61
®0="y r[D“—i—UTQU] G-6D
where the trace is now over 2 x 2 matrices. We have
_ 0 (zs)™!
D! =_ .62
((ZS)_] |Z|_2 (5 6 )
and for n = 1,2 we obtain
tn tn
T Hn _llQll uQV_In,O In,l
U'Q"u = (uTQ”v VTQ”V> = <In,l I,2) (5.63)
where
N
1 (etiyreiy) ™
lhi(g,2) = — (5.64)
‘ N ; 8% + [2Pegyre) 21"
ok
=(—5— (5.65)
(82 +0%122)" /.

and we are using the notation Eq. (2.59) (we drop the explicit
g and z dependence of [, when convenient). Note that all
I, 1(g,z) are O(1) and for even k are positive. Inverting D™l 4
UTQU we obtain

1 T(g,2)
A(g,z) = — = , (5.66)
N —det(D~' + Ut QU)
where
T(g,2)
=1 | (o La)(h2-— 2|7 (zs)™' =1
- Ly Ly)\@Es)™' =1, Lo
=DLoljg+1 I ! 21 I !
=bhaolio+ Lol 2 EE N
and
1 2
—det(D_l—f-UTQU):IL() (—2—11,2)4' 11,1 - —
|z| $Z
'S :
=1+ —-— 5.67
|Z|2 1,0 1,1 sz ( )
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We see that both T(g,z) and —det(D~' 4 UTQU) are O(1)
[to obtain their limits as N — oo we can set s~' = O(N~1/?)

equal to zero] and since —det(D~' +UTQU) > %Iio and
1 12,0 > 0, we see that for g > 0, the denominator in Eq. (5.66)
is bounded away from zero, and hence A(g,z) = O(N ~1and
can be safely ignored for g > 0.

We thus use tr(g?+ M, M))™'=tQ+o(l). From
Eq. (5.59) we obtain tr Q = I, ¢(g,z), and hence from Egs.
(2.19),

1
where r =|z|. Note that the  approximation
tr(g*+ MZM;[)’1 =trQ is equivalent to  using

MZMZT = |z]*(RL)~? instead of the full expression Eq. (5.57)
and hence to setting M = 0. Accordingly, the support of the
eigenvalue distribution is given by Eq. (2.13), or equivalently
by Eq. (2.60), and within this support, g depends only on
|z| =r and is found by solving Eq. (2.15) or, equivalently,
Eq. (2.62). Similar considerations show that in using Eq. (2.8)
to obtain limy_. p(z) we can set M =0, yielding an
isotropic eigenvalue density. From Eqgs. (2.14)—(2.16), the
proportion, n.., of eigenvalues lying at a distance larger than
r is equal to g%(r), which is found by solving Eq. (2.62).
The results Egs. (2.17) and (2.18) also hold, wherein the
normalized sums over i can be replaced with appropriate
averages (-)c.

Let us now go back to the expression for A(g,z), and
consider the case g = 0. In this case,

L1k(0.2) = |22 7). (5.69)
and we obtain
-1
T(g,7) = |z|° 022—203 o)e) +2 3
(g Z) |Z| (< C)c ( C>c< > ) <GC)C|Z|4RCZ
(5.70)
and
57! g
—det(D~' + UTQU) = ||z| > (00)e — — (5.71)
Z

In the special case in which (o). = O [this corresponds to
the special case of the example Eq. (2.42) with fug — (1 —
ey ocu-v =0, which we considered above], the determi-
nant will have a vanishing limitas N — oo (or s~ — 0). This
leads to a finite limit for A(0,z) and we obtain

o2 & ol)
Nizl* |z

Adding this to tr Q in the right side of Eq. (5.68), and using
the naive formula Eq. (2.5) or X(0,z) = 1 for the spectral
boundary, we would have obtained the equation

2 4

A(0,2) =

((oc)e = 0). (5.72)

1= (5.73)

r r

This, in turn, yields the radius Eq. (2.61), which is larger than
the true boundary of the support of limy_. o p(z) given by
Eq. (2.60).
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6. CONCLUSIONS

We have provided a general formula for the eigenvalue
density of partly random matrices, i.e., matrices with general
mean and nontrivial covariance structure. General formulas
have also been derived for the magnitude of impulse response
and frequency power spectrum in an N-dimensional linear
dynamical system with a coupling given by such partly
random matrices. Our theory makes no requirement on the
normality of matrices; its applications include, therefore,
the stability and linear response analysis of neural circuits,
whose linearized dynamics is always non-normal. We have
demonstrated our theory by tackling analytically two specific
neural circuits: a feedforward chain of length N and a set
of randomly coupled feedforward subchains of length 2. A
connection has also been revealed between the eigenvalue
spectra of dense random matrix perturbations and the theory of
pseudospectra.

The noncrossing diagrammatic method can be used to
calculate other quantities of interest for matrix ensembles of
the foorm A = M + LJR, considered here as well; possible
examples are direct statistics of eigenvectors [57], or the
correlations of the random fluctuations of the eigenvalue
density (6p,(z)dp,(z + w)), for macroscopic w [i.e., for |w| =
®(1)]. On the other hand, quantities such as the microscopic
structure of (8p,(z)8p,(z + w))y, e.g., for |w| = ON~/2)
with z inside the support, which could be of interest in
the study of eigenvalue repulsion are not accessible to the
noncrossing approximation. This is also the case, in general,
for the statistics of the “outlier” eigenvalues that we discussed
after Eq. (2.12) and in the examples of Secs. IIC 1 and IIC 2,
which may be of importance in practical applications. The
calculation of such quantities is possible, for example, by using
the replica technique (see, e.g., Ref. [58]).

Finally, there are important forms of disorder which are
not covered by the general ensemble A = M + LJ R with iid,
and hence dense, J. Examples of relevance to neuroscientific
applications include sparse A [59-61] [note that, e.g., binary
matrices with probability of a nonzero weight, p, which is
small but ®(1) as N — oo are covered by our formulas;
by “sparse” disorder we refer, e.g., to the case p = o(1)]
or more general structure of correlations between the ele-
ments of A [in the ensemble considered in this article, and
for real J, the covariance (8A;j8A;j); = (LL");:(R"R);j
is single rank]; the latter is of importance in considering
networks with local topologies where, e.g., the matrix A
has a banded structure. Generalization to other forms of
random disorder is thus an important direction for future
research.
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APPENDIX A: VALIDITY OF THE NONCROSSING
APPROXIMATION

In this appendix we give the justification for the noncrossing
approximation used in Secs. III and IV. That is, we show
that the only diagrams not suppressed by inverse powers of
N are the noncrossing diagrams. We limit our discussion
to the case of the eigenvalue density considered in Sec. III,
but the generalization to the quantities calculated in Sec. IV
is straightforward. As explained after Eq. (3.22), averaging
of G(n,z;J) over the disorder J involves summing over
all complete pairings of the factors of J in every term of
the expansion, Eq. (3.22), with each pairing of each term
represented by a diagram, as shown in Fig. 11. Each such
diagram is composed of a solid directed line [each segment
of which represents a factor of Ggf(n,z; 0)], with a number
of wavy lines [each representing the expression Eq. (3.21),
with different indices] connecting different points on the solid
arrow line, and all the internal matrix indices summed over. For
the purpose of calculating the eigenvalue density, according
to Egs. (3.16)—(3.18), what we need to calculate is actually
tr[cT(RL)™ (G(n,z; J));]; thus, we can imagine the solid
arrow making a loop by closing in on itself sandwiching
ot ® (RL)™! (see Fig. 15).

Given the structure of the Kronecker §’s in Eq. (3.21), it
is more convenient for our purpose here, however, to think of
each diagram as a number of “orbits,” each formed by starting
somewhere on the solid line and moving on it always along
its arrow until the next wavy line is encountered, whereby
we leave the solid line, continuing on the wavy line without
crossing it (because Eq. (3.21) is composed of two Kronecker
8’s, one for each side of the wavy line, enforcing index
identification at the corresponding ends on each side [62])
and return somewhere else on the solid line, continuing as
before until we reach the initial point (see Fig. 15). As we go
around this orbit, for each solid line traversed we write down,
from right to left, a G(n,z; 0) and for each wavy line a 7" [see
Egs. (3.20)] where i is the index of the wavy line. Because all
matrix indices are summed over, such adjacent factors multiply
like matrices, and since the orbit forms a loop, in the end we
obtain the trace of the matrix product thus obtained. [This
recipe for assigning the contribution of each orbit accounts
for the Kronecker 6’s and 7"’s in Eq. (3.21), but not for the
factor % and the sum over r’s; we account for these, at the end,
after Eq. (A2).] A generic orbit, which we refer to as internal,
closes on itself after traversing, say, m wavy lines sandwiching
m Green’s functions [e.g., the orbits labeled 2 and 3 in panel
(a) of Fig. 15] and thus contributes a trace of the form

Ly, =Tr[G(n,z;0)x" - - G(n,z; 0)" ], (Al)
where r is short-hand for {r;,, .. .,r; }, and i are the indices of
the wavy lines traversed in the orbit. In every diagram, there is
also exactly one orbit (e.g., the orbits labeled 1 in both panels
of Fig. 15) which, in addition, includes the factor o +(RL)™!
sandwiched between the two external Green’s functions. This
orbit, which we call the external orbit, contributes a trace of
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FIG. 15. (Color online) The orbits (shown by thin red paths)
for two diagrams for the spectral density in a complex J en-
semble. The noncrossing diagram on top has three orbits: orbit
(1) is the external orbit connecting the two ends of the Green’s
function, while orbits (2) and (3) are the internal orbits. As in
Egs. (A1) and (A2), they contribute tr[octG(n,z;0)7" G(n,z;0)],
Tr (7371 G(n,7;0)r2G(n,z;0)] and Tr[7>"2G(n,z;0)], respec-
tively, with r; and r, summed over 1 and 2 [cf. Eq. (3.21)].
The trace contributed by each of the three orbits is O(N), which,
when combined with the three factors of 1/N accounting for
the two wavy lines and the normalization of the external orbit’s
trace, yield an O(1) expression for this diagram. By contrast, the
crossing diagram on the right has no internal orbits. Its only external
orbit contributes Tr [0+ G(17,z;0)7"2G(n,z;0)7> "1 G(n,7; 0)r3"2
G(n,z;0)7"1G(n,z;0)] which after normalization is O(1). Account-
ing for two factors of 1/N coming from the wavy lines, we then
see that this crossing diagram is O(N ~2) and hence is suppressed as
N — oo.

the form

E,; =Tr[o"(RL) 'G(n,z;0)x" - - - " G(1,2;0)], (A2)

where n is the number of wavy lines the orbit traverses, 7 is
short for {r;, ...,r; }, and ji are the indices of the wavy lines
traversed in this orbit [in writing Eq. (A2) we dropped the %
that normalizes the trace in Egs. (3.16), but we account for it
below]. For succinctness, in Eqs. (A1) and (A2) we suppressed
the arguments (,z) for I, , and E, ; on which they depend.
The full expression for the diagram is obtained by multiplying
all such trace factors contributed by every orbit in the diagram,
as well as a factor of N~%~!, where w is the number of wavy
lines in the diagrams, to account for the N~! in Eq. (3.21) for
each wavy line, as well as the extra N —1 which normalizes
the trace in the external orbit Eq. (A2), as dictated by
Eq. (3.16). The obtained expression is finally summed over
all the r indices corresponding to each wavy line, as required
by Eq. (3.21).

The justification for the noncrossing approximation is based
on the claim that each trace contributed by an orbit (external
or internal) as in Eqs. (Al) and (A2) is O(N), irrespective
of n, z, m, or r. We provide justification for this claim below.
However, accepting it as true, we see that any diagram’s scaling
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with N solely depends on the number of orbits and wavy lines
it contains. A well-known topological argument then shows
that the contributions of crossing diagrams are suppressed by
inverse powers of N [63,64]; for completeness, we summarize
this argument here. First note that, assuming the claim, any
diagram will yield an expression that is O(N%) with
a=f—-w-1, (A3)
where f is the number of orbits in the diagram (the sum over
at most 2" possible configurations of r; does not contribute to
the scaling with N). Let V denote the total number of vertices
in the diagram [i.e., the number of intersections of wavy lines
and the solid line, plus an extra one representing the insertion
of 6 (RL)™! in the solid line loop] and let E denote its total
number of edges, i.e., E = w + s, where s is the number of
solid line segments (s = 5 in both panels of Fig. 15). It is
easy to see that V = s. Thus, we have E — V = w. Formally
defining the number of “faces” in the diagram by F = f + 1,
and its “Euler characteristic” by
x=F—-E+V, (A4)
we then find that x = F —(E— V)= f +1— w. From
Eq. (A3) we then obtain
oa=yx-—2. (AS)
Thus, the contribution of a diagram is O(N%), with « deter-
mined solely by the diagram’s formal “Euler characteristic” via
Eq. (AS5). It can be shown that a diagram with F formal “faces”
and a formal “Euler characteristic” x as defined above, can be
drawn on (embedded in) a 2D oriented surface with Euler
characteristic x, such that no edges (solid or wavy) cross to
create new vertices and each face created on the surface by its
partitioning by the drawn diagram (a) is topologically a disk
and (b) has a one-to-one correspondence with and is encircled
by an orbit in the diagram, where we now count among the
orbits, also the loop formed by the solid arrow line. Thus, the
number of faces on the surface is indeed F = f + 1, and the
X, as defined above for the diagram, indeed agrees with the
Euler characteristic of the surface, as conventionally defined.
Topologically, such a surface is a generalized torus with g
holes, satisfying x = 2 — 2g; the surface with zero holes is
the sphere, or after decompactification, the plane [e.g., the
diagram in panel (b) of Fig. 15 can be drawn in this manner
on a torus]. We thus see that
o =-2g, (A6)
and therefore the only diagrams that are not suppressed by
inverse powers of N are those that can be drawn, as described
above, on the plane. Since we took the area enclosed by the
solid arrow line loop as a face by itself, this means that the
diagram should be drawable with the wavy lines remaining
outside this area (in order not to partition it into several faces)
without crossing each other; this is the precise definition of the
diagram being noncrossing [65].
Let us now go back to justifying the claim that the traces
contributed by the orbits, as in Egs. (A1) and (A2), are O(N).
For this purpose we make use of the SVD of M, introduced in
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Eq. (3.32). Defining the unitary matrix

_(U: O
UZ = (O VZ>’ (A7)

and using Eq. (3.32), we can write Hy(z), defined in Eq. (3.14),

as
Ho(z) = U Ho() U], (A8)

where
Hy(z) = (gz %) (A9)

Let us also define G(n,z; 0) = MZTG(U,Z; 0)U, such that
G(1,2;0) = U, G(n,z; 0. (A10)
Then using the definition G(,z;0) =

that
1 n S.
2_Q2 2_Q2
— =" ) @A
n — Hy(z) promy o S
where we used Eq. (A9) to write the last equality. Given

the block-diagonal nature of Eq. (A7) and the definitions,
Eq. (3.20), we also have

" =Un"U. (A12)

We now substitute G(n,z;0) and 7" in Eqs. (Al) and (A2)
with the right hand sides of Eqs. (A10) and (A12), respectively.
After canceling the /,’s we obtain

[n — Ho(2)]™!, we see

G(n,z;O) =

Ly = Tr[G(n,z; 001" -+ G(n,z; 00" ], (A13)

E,; =TrlotA(2)G(n,z;0)" - - 7" G(n,2;0)], (Al4)
where we defined

A(z) = UJ(RL)'V,, (A15)

such that L{J[a+ ® (RL)Y U, =07 ® A(z) = 0 A(z). For
the internal orbits, we see from Eq. (A11) that each G(n,z; 0),
depending on whether it is sandwiched between the same
projectors ", or between two opposite projectors, 7" and
737", contributes a diagonal factor equal to n/(n*> — Sf) or
S./(n* — S2), respectively. Thus, for any configuration of r;’s,
if the number of Green’s functions sandwiched the second way
isk (1 < k < m), we obtain

m—k k
Lnr(1.2) = Z A1

<k <m),
7% — 522" &

(A16)

for the internal orbits [in particular, we see that the sole
dependence of I, »(17,z) on r is via the number k]. We therefore
have

" i)
[n? — si(2)2]"
When the imaginary part of 7 is nonzero, the denominator on
the right hand side of Eq. (A17) cannot vanish for any value
of s;(z) [while as n — {0, which is the limit we have to take

after summing up the relevant diagrammatic series, s;(z), that
approach zero as N grows can make this expression unbounded

[1n,r(n,2)] < N max (A17)
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as N — oo]. Assuming Im#n > 0, it will be sufficient for our
purposes to substitute Eq. (A17) with the weaker bound,

nmfksk

(* — sH)"
where now the maximum is taken for s ranging over the whole
[0,00). Since Im n > 0 the expression has no singularities at
finite real s, and since 2m > k, it cannot diverge as s — 00
either; thus, it has a finite maximum independent of N. More

[ Lnr(n,2)] < N max (Imn > 0), (Al8)
N

. .. 0" ks V2 m
precisely, it is easy to show that max; |m| < [m] .

irrespective of k as long as 1 < k < m, yielding
V2 "
[Lnr(,2)| < N| —— (Imn > 0). (A19)
[Im 7|

Similarly, the trace for the external orbit can be written in
the new basis Eq. (A11) as

ZA,z(z) SO k<, a20)

En.f 7Z

(n,2) = I
where k& is the number of Green’s functions in Eq. (A2)
sandwiched between two 7"’s with different superscripts; this
convention works correctly for the external orbit as well, if we
account for the presence of o+ by imagining a 72 (7!) to the
left (right) of the leftmost (rightmost) Green’s function. From
Eq. (A15), we can write A;;(z) = w;(2)'(RL)"1v;(z), where
we defined the vectors u;(z) and v;(z) to be the ith column of
U, and V,, respectively. By the Cauchy-Schwartz inequality
we then have

|Aii (@) < Iw@IIRL) Vi)
< N @V @INHIRLY ™,

where |[(RL)™!| is the operator norm, or the maximum
singular value, of (RL)~'. However, since U, and V, are
unitary matrices, u; (z) and v;(z) are unit vectors, and we obtain

(A21)

|Aii (@) < IIKRLYI. (A22)
Going back to Eq. (A20), this yields the bound
n—k k
n""si(2)
|E,;(n,2)] < N(RL) || max | ————=—|. (A23)
i |[n? = si(27?]"

The only difference with the inequality for 1, , is the factor
[(RL)~"|. Repeating the same argument as for the internal
traces, we therefore see that

2 n
|E,7(n,2)| < N L I(RL)™'| (Imn > 0), (A24)
[Im 1|

and thus a sufficient condition for E, 7 to be O(N) for Imn >
0, is that ||(RL)™!| remains bounded as N — o0, i.e.,

IRL)™ = O(D). (A25)

Combining Eqgs. (A19) and (A24), and given the prescription
after Eq. (A2), we can bound the absolute value of the
contribution of a diagram with genus g (or g crossings), w

wavy lines, and s solid lines, by 2’”[&]‘Y I(RL)™! ||N‘Zg
[the power of s is obtained by noting that the powers of m and
n in the bounds Eqgs. (A19) and (A24), when summed over all
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orbits must equal s, since every Green’s function or solid line
appears in exactly one orbit]. Hence, for a fixed, nonzero Im n,
the contribution of crossing diagrams (i.e., those with g > 1)
goes to zero as N — 00.

Thus, if we take the limit N — oo before the limity — i0™,
ignoring the crossing diagrams is safe, and the expression
for p(z) obtained from Eq. (3.16) after analytic continuation
of tr[c"(RL)™'G(n,2)] to n = i0, with G(n,z) given by the
contribution of noncrossing diagrams to (G(n,z; J)),, gives
the correct result for limy_, o, p(z). We mention that when the
smallest singular value s;(z) remains bounded away from zero
as N — oo, even at n = 0 the traces Egs. (A16) and (A20)
are O(N), as is not hard to check, justifying the noncrossing
approximation at n = 0. Thus, it is only when some s;(z) are
o(1) that it becomes important to send n to i0" only after
the limit N — oo has been taken. In particular, in such cases,
applying the limit n — i0™" to the results obtained using the
noncrossing approximation before taking the limit N — oo
may yield finite-size contributions to limy_, o, p(z), which, in
general, may yield incorrect subleading corrections.

APPENDIX B: p(z) VANISHES IN THE REGION EQ. (3.38)

In this appendix we prove more rigorously that in the region
Eq. (3.38), the eigenvalue density vanishes. More precisely, we
prove that p(z) = limc_,o+ limy_, o p, (z,€) = 0, where

193 (RL)"'M}
py(z.€)=——tr |:+:| B1)
70T | MM 4y

is obtained by substituting Eq. (3.35) into Egs. (3.17). Here
y = g(z,€) + € is the solution of Eq. (3.37), which, as we
argued in Sec. II1, vanishes as € — 0T when z is in the region
Eq. (3.38) [note that since Eq. (3.37) is defined in the limit
N — o0, y has no dependence on N]. Recall that for € > 0,
g(z,€) is positive and therefore y > ¢ > 0. Expanding the
derivative in Eq. (B1) we obtain

PMWMUW
TPy (2,€) = tr |
M _M; + V2

—tr (RL)flef
M M; + y?

x MZ(RL)‘Tf
M M; + V2

RL)"'M! 1
—tr ( )]L d T 35(1/2)
M_M; + y> M_M; + y?

(RL)"'Q(RL)"!
=tr| —mmm—
M M + 2

. [ (RL)"'M] 1

MM; +y> M M; +y

where we defined Q =1 — Mi mMZ (we suppress the

explicit dependence of y on z for simplicity). By the Woodbury
}/2
MIM +y?’

matrix identity Q = which upon substitution in
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Eq. (B2) yields

1 —t
npN(z,6)=tr[ (RL) (RL) }/2

MIM, +y2> MM + 2

RL)™'M!
—tr ( )T : : 9:(y?). (B3)
M M; + V2 M M; + 72
Differentiating Eq. (3.37) with respect to 7 yields

—2)/28le

—d:(y%) = , B4
=TTk 250,k B
with the partial derivatives of (y,z) given by
—3,:K =T (y) = lim T (y),
—0:K = Vao(y) = lim V().
where we defined
Ty(y) =t 1 (B6)
yy=tr | ——— |,
! (M. M] + y2)?
1 M,(RL)~T
Vn(y) =tr ; L . . (BY)
M M. +y? M_M; + y?
We thus obtain
2y Voo (y) Un(y)*
70y(2,6) = Y2 Ty (y) + — Y (g

1—K(y)+2y2 T ()
where we defined
RL)™! RL)~T
(RL'_RL7T g,
MM, + V2 MZMZI + 7/2

TN(V) =1r |:

Having eliminated derivatives of y, we now simply need to
show that lim,_, o+ limy_ o of the right side of Eq. (B8)
vanishes for z is in the region Eq. (3.38) [where y = 0% is
the solution of Eq. (3.37) as € — 07].

We will start by bounding the traces 7y (y) and Vy(y) in
Eq. (B8). For Vy(y) we use the SVD Eq. (3.32),

. (RL)"'M] 1
T
M M! + y2 MM + 2

Wn(y)l =

=tr UT(RL)”VL
z Z(Szz + )/2)2

<mmwwk§%ﬁ} (B10)
[where in the last line we used Eq. (A22)], i.e.,
V) < IRL) Vi), (B11)
where we defined
. Y 5i(2)
Vy(y) = ﬁ;‘m (B12)
Taking the limit N — oo, we obtain from Eq. (B11)
V(P < CV (), (B13)
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where V_(y) = limy_.oo Vy(¥), and C is an upper bound on
I(LR)~"|| [which we have assumed is O(1) as N — oo]. To
bound 7y (y), we use the inequality

ltr (ABCD)| < |A|lIClltr(BBY2tr (DD2.  (B14)

This can be derived by first using the Cauchy-Schwartz
inequality, |tr (AB)|? < tr (AADtr (BBY), and then using the
inequality [tr (AB)| < || B||tr (A), valid for positive semidefi-
nite A (which in turn follows from the definition of || B|| after
unitary diagonalization of A). Using (B14) we obtain

) (RL)™! (RL)T
I
MIM, + y2 M,M] + 2

2
! B15
—— (B13)

< IRL™P :
MM +y
or
1 Tv ()] < IRL) P Ty (1) (B16)

Using the inequalities (B11), (B13), and (B16) in Eq. (B8) we
obtain

. 292V >
Tlp,(z.6) < C* [VZTN(V)+ Y Voo (¥) Vy(v) }

1 - K@) +2y2 T ()
B17)
Taking the N — oo limit (while keeping y finite), and defining
p(z,€) = limy_. p, (z,€), we obtain
2[y Vo ()P }
1 - K@) +2y2 T5(r)

mp(z,€) < C? {VZT;(J/) +

(B18)
where we defined
1< 1
T~ = lim — _ B19
~(y) = lim N; e (B19)
N
- .1 5i(2)
=1 — _— B20
Valy) = Jim — ;: o B

Thus, to show that lim._, ¢+ p(z,€) = 0, it suffices to show that
y?T(y) and y V_(y) vanish as y — 0% [since z is in the
region Eq. (3.38), 1 — K(y) and hence the denominator in the
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last term in Eq. (B18) remains positive as y — 07]. Let us
rewrite Eq. (B19) as

- ® pg(s;z)ds
T = = B21
() /0 o2t 27 (B21)
. < sp(s;2)ds
1% = —_— B22
() /0 Eos (B22)
where we defined
LN
py(s;2) = lim — " 8[s — 5i(2)] (B23)
N—oo N P

as the limit of the density of the singular values of M, [66].
Note that contributions to 7__(y) and V_(y) from integration
on [sg,00) for any fixed, nonzero sy remain finite as y —
0"; only singular contributions arising from the region s =
O(y) < 1 can contribute to y>7_(y) and y V_(y) as y —
0. Thus, we only need concern ourselves with the portion of
integrals from O to some arbitrary small, but fixed sy, and show

that y? [° % vy s(’;sz(i;;‘)i; vanish as y — 0F.
Let us first consider the situation similar to that in the two
examples Egs. (5.1) and (2.42). For those examples, there is a
region of z outside Eq. (3.38), where a single [more generally
O(1)] singular value s;(z) vanishes as N — oo, while all the
other s;(z) remain bounded from below. However, an O(1)
set of (vanishing) singular values does not contribute to the
density Eq. (B23) and since the other s;(z) are bounded from
below, there is an so below which p,(s; z) identically vanishes.
So the claim is clearly true for such cases. More generally, we
exploit the fact that z is in the region Eq. (3.38), so that

* py(s:2)ds

lim
524 y?

y~>0+ 0

< 1. (B24)

We conclude that as s — 07 the density, p5(s; z), must vanish
at least as fast as s“; i.e., it must be O(s%), for some o > 1.
Otherwise, the integral in Eq. (B24) diverges in the limit.
Let us therefore choose sy to be small enough such that for
s < 8o, p(s32) < cs® for some constant ¢ and o > 1. It is

then an elementary exercise to show that y2 f (52‘ +¢2)2 and

a+1 . _ .
yfso (52+de5)2 are O(me(Z,a 1)) and O(me(l,a l)), respec-
tively, as ¥ — 0T, and since o > 1, they both vanish in the
limit, proving the claim.

[1] M. L. Mehta, Random Matrices (Academic Press, San Diego,
2004).

[2] Z. Bai and J. W. Silverstein, Spectral Analysis of Large
Dimensional Random Matrices (Science Press, Beijing, 2006).

[3] T. Guhr, A. Miller-Groeling, and H. A. Weidenmiiller, Phys.
Rep. 299, 189 (1998).

[4] H. Dale, Proc. R. Soc. Med. 28, 319 (1935).

[5] J. C. Eccles, P. Fatt, and K. Koketsu, J. Physiol. 126, 524 (1954).

[6] P. Strata and R. Harvey, Brain. Res. Bull. 50, 349 (1999).

[7] B. K. Murphy and K. D. Miller, Neuron 61, 635 (2009).

[8] H.Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi,
Nature (London) 407, 651 (2000).

[9] A. L. Barabasi and Z. N. Oltvai, Nat. Rev. Genet. 5, 101 (2004).

[10] X. Zhu, M. Gerstein, and M. Snyder, Genes Dev. 21, 1010
(2007).

[11] M. Vidal, M. E. Cusick, and A.-L. Barabasi, Cell 144, 986
2011).

[12] R. M. May, Nature (London) 238, 413 (1972).

[13] J. Camacho, R. Guimera, and L. A. Nunes Amaral, Phys. Rev.
Lett. 88, 228102 (2002).

[14] E. S. Valdovinos, R. Ramos-Jiliberto, L. Garay-Narvaez, P.
Urbani, and J. A. Dunne, Ecol. Lett. 13, 1546 (2010).

[15] J. E. Vermaat, J. A. Dunne, and A. J. Gilbert, Ecology 90, 278
(2009).

[16] R. Guimera, D. B. Stouffer, M. Sales-Pardo, E. A. Leicht, M. E.
J. Newman, and L. A. N. Amaral, Ecology 91, 2941 (2010).

012820-35


http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1113/jphysiol.1954.sp005226
http://dx.doi.org/10.1113/jphysiol.1954.sp005226
http://dx.doi.org/10.1113/jphysiol.1954.sp005226
http://dx.doi.org/10.1113/jphysiol.1954.sp005226
http://dx.doi.org/10.1016/S0361-9230(99)00100-8
http://dx.doi.org/10.1016/S0361-9230(99)00100-8
http://dx.doi.org/10.1016/S0361-9230(99)00100-8
http://dx.doi.org/10.1016/S0361-9230(99)00100-8
http://dx.doi.org/10.1016/j.neuron.2009.02.005
http://dx.doi.org/10.1016/j.neuron.2009.02.005
http://dx.doi.org/10.1016/j.neuron.2009.02.005
http://dx.doi.org/10.1016/j.neuron.2009.02.005
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1101/gad.1528707
http://dx.doi.org/10.1101/gad.1528707
http://dx.doi.org/10.1101/gad.1528707
http://dx.doi.org/10.1101/gad.1528707
http://dx.doi.org/10.1016/j.cell.2011.02.016
http://dx.doi.org/10.1016/j.cell.2011.02.016
http://dx.doi.org/10.1016/j.cell.2011.02.016
http://dx.doi.org/10.1016/j.cell.2011.02.016
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1038/238413a0
http://dx.doi.org/10.1103/PhysRevLett.88.228102
http://dx.doi.org/10.1103/PhysRevLett.88.228102
http://dx.doi.org/10.1103/PhysRevLett.88.228102
http://dx.doi.org/10.1103/PhysRevLett.88.228102
http://dx.doi.org/10.1111/j.1461-0248.2010.01535.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01535.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01535.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01535.x
http://dx.doi.org/10.1890/07-0978.1
http://dx.doi.org/10.1890/07-0978.1
http://dx.doi.org/10.1890/07-0978.1
http://dx.doi.org/10.1890/07-0978.1
http://dx.doi.org/10.1890/09-1175.1
http://dx.doi.org/10.1890/09-1175.1
http://dx.doi.org/10.1890/09-1175.1
http://dx.doi.org/10.1890/09-1175.1

AHMADIAN, FUMAROLA, AND MILLER

[17] L. N. Trefethen and M. Embree, Spectra and Pseudospectra
(Princeton University Press, Princeton, NJ, 2005).

[18] S. Ganguli, D. Huh, and H. Sompolinsky, Proc. Natl. Acad. Sci.
U.S.A. 105, 18970 (2008).

[19] M. S. Goldman, Neuron 61, 621 (2009).

[20] M. G. Neubert and H. Caswell, Ecology 78, 653 (1997).

[21] X. Chen and J. E. Cohen, Proc. Biol. Sci. 268, 869 (2001).

[22] S. Tang and S. Allesina, Front. Ecol. Evol. 2 (2014).

[23] J. H. McCoy, New J. Phys. 15, 113036 (2013).

[24] J. Feinberg and A. Zee, Nucl. Phys. B 504, 579 (1997).

[25] J. Feinberg and A. Zee, Nucl. Phys. B 501, 643 (1997).

[26] J. Ginibre, J. Math. Phys. 6, 440 (1965).

[27] V. L. Girko, Theory Probab. Its Appl. (Engl. Transl.) 29, 694
(1984).

[28] Z. D. Bai, Ann. Probab. 25, 494 (1997).

[29] T. Tao and V. Vu, Commun. Contemp. Math. 10, 261 (2008).

[30] F. Gotze and A. Tikhomirov, Ann. Probab. 38, 1444 (2010).

[31] B. Khoruzhenko, J. Phys. A: Math. Gen. 29, L165 (1996).

[32] P. Biane and F. Lehner, Collog. Math. 90, 181 (2001).

[33] S. Hikami and R. Pnini, J. Phys. A: Math. Gen. 31, L587 (1998).

[34] Since we present results for the limit of the eigenvalue density,
etc.,as N — oo, M, L, R, and J must each be more precisely
understood as an infinite sequence of matrices dependent on N.

[35] T. Tao, V. Vu, and M. Krishnapur, Ann. Probab. 38,2023 (2010).

[36] T. Tao and V. Vu, Acta Math. 206, 127 (2011).

[37] T. Tao, Probab. Theory Relat. Fields 155, 231 (2013).

[38] S. O’Rourke and D. Renfrew, Electron. J. Probab. 19, 1 (2014).

[39] S. F. Edwards and R. C. Jones, J. Phys. A: Math. Gen. 9, 1595
(1976).

[40] The designation “highly non-normal” can be motivated, when
L and R are proportional to the identity matrix, as follows.
Let us denote the (operator norm based) e-pseudospectrum of
M, i.e., the region of z’s over which ||(z — M)7!|| > ¢!, by
¥.(M). For fixed N, the true spectrum of M, which we denote
by (M), is the set of points over which the smallest singular
value of (z — M) is exactly zero and hence ||(z — M)~!|| = oo.
For finite N, lim._ o+ X.(M) = (M) for any M. However,
for non-normal M this approach could be much slower than
in the normal case (see our discussion in Sec. II A 2, and the
book [17] for a complete discussion of pseudospectra and
their relationship with non-normality). Now suppose that, as
in the atypical cases under discussion, in a finite region of the
complex plane the smallest singular value of M, is nonzero for
finite N, but vanishes in the limit N — oo. This means that
the operator norm of (z — M)™" o« M ' is finite over such a
region but goes to infinity as N — oo. Hence, if we define
YX(M) = limy_o Ze(M) and (M) = limy_, oo (M), we
see that in such cases lim._,o+ X°(M) # (M) [or equiv-
alently, lime_ o+ limy_, o 2 (M) £ limy_ oo lime_ o+ X (M)].
More generally but less precisely, this indicates that at finite
but large N, the € pseudospectra of such matrices can cover
a significantly broader region than the spectrum even for very
small €, indicating extreme non-normality.

[41] K. Rajan and L. F. Abbott, Phys. Rev. Lett. 97, 188104 (2006).

[42] This equivalence is true more generally for any matrix norm
derived from a general vector norm; see Ref. [17] for a proof.

[43] Y. Yin, Z. Bai, and P. Krishnaiah, Probab. Theory Relat. Fields
78, 509 (1988).

[44] R. A. Horn and R. G. Johnson, Matrix Analysis (Cambridge
University Press, Cambridge, UK, 1990).

PHYSICAL REVIEW E 91, 012820 (2015)

[45] The unitary invariance of these formulas is, in turn, a conse-
quence of the invariance of both the corresponding quantities
[p(z) and ||x(2)||*], as well as the statistical ensemble for J,
Eq. (3.2), and hence that of LJ/JR when L & R o 1, under
unitary transforms like Eq. (2.34).

[46] P. Jonas, J. Bischofberger, and J. Sandkiihler, Science 281, 419
(1998).

[47] D. H. Root, C. A. Mejias-Aponte, S. Zhang, H.-L. Wang, A.
F. Hoffman, C. R. Lupica, and M. Morales, Nat. Neurosci. 17,
1543 (2014).

[48] D. Chafai, J. Theor. Probab. 23, 945 (2010).

[49] Y. Wei, Phys. Rev. E 85, 066116 (2012).

[50] Itis also common to write the firing rate equations in the different
form, T4 = —r(t) + f[Wr(t) + I'(t)]. At least in the case
where all neurons have equal time constants, i.e., T o 1, the
two formulations are equivalent and are related by the change
of variable v = Wr + 1" [51].

[51] K. D. Miller and F. Fumarola, Neural Comput. 24, 25 (2012).

[52] J. Hofbauer and K. Sigmund, Evolutionary Games and Popula-
tion Dynamics (Cambridge University Press, Cambridge, UK,
1998).

[53] M. Stern, H. Sompolinsky, and L. F. Abbott, Phys. Rev. E 90,
062710 (2014).

[54] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Phys. Rev.
Lett. 61, 259 (1988).

[55] J. Feinberg, J. Phys. A: Math. Gen. 39, 10029 (2006).

[56] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(Wiley-Interscience, New York, 1970).

[57] B. Mehlig and J. T. Chalker, J. Math. Phys. 41, 3233 (2000).

[58] S. M. Nishigaki and A. Kamenev, J. Phys. A: Math. Gen. 35,
4571 (2002).

[59] T. Rogers and I. P. Castillo, Phys. Rev. E 79, 012101 (2009).

[60] F. Slanina, Phys. Rev. E 83, 011118 (2011).

[61] I. Neri and F. L. Metz, Phys. Rev. Lett. 109, 030602 (2012).

[62] This structure is a consequence of using a complex ensemble
for J, for which the covariances (J,,J.;) vanish. For
the real Gaussian ensemble, by contrast, the latter do
not vanish; in this case Eq. (3.21) becomes (JFJ!)) =
ﬁ [8addpe (Uojgdy} + 00230;5) + 8acOpa (G,;}gﬂ;rg + 0,40,5)] =
A (Tls8a) (T, 85e) + (L, 8ac) (T35 85a))-

[63] G. t. Hooft, Nucl. Phys. B 72, 461 (1974).

[64] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber, Commun.
Math. Phys. 59, 35 (1978).

[65] Notice that this is a more restrictive property than planarity of
the diagram; for example, the graph in panel (b) of Fig. 15 is
planar, as one of the wavy lines can be drawn inside the solid
loop without crossing any other line, but it is not noncrossing as
defined here.

[66] More precisely, we only need to define the limit Eq. (B23) in
the sense of distributions, i.e., such that for any regular test
function, f(s2), bounded at infinity and regular everywhere,
including at s> — 0", we have limy_ % Z,N:1 flsi(2)?] =
fooo f (sz),oS (s;z)ds. We do not assume any smooth form for
05 (s; 2); in particular, pg(s; z) may have § function singularities
when an O(N) singular values converge to the same value as
N — oo. Also note that this assumption does not forbid the
possibility that some s;(z) diverge as N — 00; our requirement
that || M|, remain bounded automatically guarantees that these
will not be numerous enough to contribute to o, (s; z) at infinity.

012820-36


http://dx.doi.org/10.1073/pnas.0804451105
http://dx.doi.org/10.1073/pnas.0804451105
http://dx.doi.org/10.1073/pnas.0804451105
http://dx.doi.org/10.1073/pnas.0804451105
http://dx.doi.org/10.1016/j.neuron.2008.12.012
http://dx.doi.org/10.1016/j.neuron.2008.12.012
http://dx.doi.org/10.1016/j.neuron.2008.12.012
http://dx.doi.org/10.1016/j.neuron.2008.12.012
http://dx.doi.org/10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
http://dx.doi.org/10.1098/rspb.2001.1596
http://dx.doi.org/10.1098/rspb.2001.1596
http://dx.doi.org/10.1098/rspb.2001.1596
http://dx.doi.org/10.1098/rspb.2001.1596
http://dx.doi.org/10.3389/fevo.2014.00021
http://dx.doi.org/10.3389/fevo.2014.00021
http://dx.doi.org/10.3389/fevo.2014.00021
http://dx.doi.org/10.1088/1367-2630/15/11/113036
http://dx.doi.org/10.1088/1367-2630/15/11/113036
http://dx.doi.org/10.1088/1367-2630/15/11/113036
http://dx.doi.org/10.1088/1367-2630/15/11/113036
http://dx.doi.org/10.1016/S0550-3213(97)00502-6
http://dx.doi.org/10.1016/S0550-3213(97)00502-6
http://dx.doi.org/10.1016/S0550-3213(97)00502-6
http://dx.doi.org/10.1016/S0550-3213(97)00502-6
http://dx.doi.org/10.1016/S0550-3213(97)00419-7
http://dx.doi.org/10.1016/S0550-3213(97)00419-7
http://dx.doi.org/10.1016/S0550-3213(97)00419-7
http://dx.doi.org/10.1016/S0550-3213(97)00419-7
http://dx.doi.org/10.1063/1.1704292
http://dx.doi.org/10.1063/1.1704292
http://dx.doi.org/10.1063/1.1704292
http://dx.doi.org/10.1063/1.1704292
http://dx.doi.org/10.1137/1129095
http://dx.doi.org/10.1137/1129095
http://dx.doi.org/10.1137/1129095
http://dx.doi.org/10.1137/1129095
http://projecteuclid.org/euclid.aop/1024404298
http://dx.doi.org/10.1142/S0219199708002788
http://dx.doi.org/10.1142/S0219199708002788
http://dx.doi.org/10.1142/S0219199708002788
http://dx.doi.org/10.1142/S0219199708002788
http://dx.doi.org/10.1214/09-AOP522
http://dx.doi.org/10.1214/09-AOP522
http://dx.doi.org/10.1214/09-AOP522
http://dx.doi.org/10.1214/09-AOP522
http://dx.doi.org/10.1088/0305-4470/29/7/003
http://dx.doi.org/10.1088/0305-4470/29/7/003
http://dx.doi.org/10.1088/0305-4470/29/7/003
http://dx.doi.org/10.1088/0305-4470/29/7/003
http://dx.doi.org/10.4064/cm90-2-3
http://dx.doi.org/10.4064/cm90-2-3
http://dx.doi.org/10.4064/cm90-2-3
http://dx.doi.org/10.4064/cm90-2-3
http://dx.doi.org/10.1088/0305-4470/31/35/001
http://dx.doi.org/10.1088/0305-4470/31/35/001
http://dx.doi.org/10.1088/0305-4470/31/35/001
http://dx.doi.org/10.1088/0305-4470/31/35/001
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1214/10-AOP534
http://dx.doi.org/10.1007/s11511-011-0061-3
http://dx.doi.org/10.1007/s11511-011-0061-3
http://dx.doi.org/10.1007/s11511-011-0061-3
http://dx.doi.org/10.1007/s11511-011-0061-3
http://dx.doi.org/10.1007/s00440-011-0397-9
http://dx.doi.org/10.1007/s00440-011-0397-9
http://dx.doi.org/10.1007/s00440-011-0397-9
http://dx.doi.org/10.1007/s00440-011-0397-9
http://dx.doi.org/10.1214/EJP.v19-3057
http://dx.doi.org/10.1214/EJP.v19-3057
http://dx.doi.org/10.1214/EJP.v19-3057
http://dx.doi.org/10.1214/EJP.v19-3057
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1103/PhysRevLett.97.188104
http://dx.doi.org/10.1103/PhysRevLett.97.188104
http://dx.doi.org/10.1103/PhysRevLett.97.188104
http://dx.doi.org/10.1103/PhysRevLett.97.188104
http://dx.doi.org/10.1007/BF00353874
http://dx.doi.org/10.1007/BF00353874
http://dx.doi.org/10.1007/BF00353874
http://dx.doi.org/10.1007/BF00353874
http://dx.doi.org/10.1126/science.281.5375.419
http://dx.doi.org/10.1126/science.281.5375.419
http://dx.doi.org/10.1126/science.281.5375.419
http://dx.doi.org/10.1126/science.281.5375.419
http://dx.doi.org/10.1038/nn.3823
http://dx.doi.org/10.1038/nn.3823
http://dx.doi.org/10.1038/nn.3823
http://dx.doi.org/10.1038/nn.3823
http://dx.doi.org/10.1007/s10959-010-0285-8
http://dx.doi.org/10.1007/s10959-010-0285-8
http://dx.doi.org/10.1007/s10959-010-0285-8
http://dx.doi.org/10.1007/s10959-010-0285-8
http://dx.doi.org/10.1103/PhysRevE.85.066116
http://dx.doi.org/10.1103/PhysRevE.85.066116
http://dx.doi.org/10.1103/PhysRevE.85.066116
http://dx.doi.org/10.1103/PhysRevE.85.066116
http://dx.doi.org/10.1162/NECOa00221
http://dx.doi.org/10.1162/NECOa00221
http://dx.doi.org/10.1162/NECOa00221
http://dx.doi.org/10.1162/NECOa00221
http://dx.doi.org/10.1103/PhysRevE.90.062710
http://dx.doi.org/10.1103/PhysRevE.90.062710
http://dx.doi.org/10.1103/PhysRevE.90.062710
http://dx.doi.org/10.1103/PhysRevE.90.062710
http://dx.doi.org/10.1103/PhysRevLett.61.259
http://dx.doi.org/10.1103/PhysRevLett.61.259
http://dx.doi.org/10.1103/PhysRevLett.61.259
http://dx.doi.org/10.1103/PhysRevLett.61.259
http://dx.doi.org/10.1088/0305-4470/39/32/S07
http://dx.doi.org/10.1088/0305-4470/39/32/S07
http://dx.doi.org/10.1088/0305-4470/39/32/S07
http://dx.doi.org/10.1088/0305-4470/39/32/S07
http://dx.doi.org/10.1063/1.533302
http://dx.doi.org/10.1063/1.533302
http://dx.doi.org/10.1063/1.533302
http://dx.doi.org/10.1063/1.533302
http://dx.doi.org/10.1088/0305-4470/35/21/307
http://dx.doi.org/10.1088/0305-4470/35/21/307
http://dx.doi.org/10.1088/0305-4470/35/21/307
http://dx.doi.org/10.1088/0305-4470/35/21/307
http://dx.doi.org/10.1103/PhysRevE.79.012101
http://dx.doi.org/10.1103/PhysRevE.79.012101
http://dx.doi.org/10.1103/PhysRevE.79.012101
http://dx.doi.org/10.1103/PhysRevE.79.012101
http://dx.doi.org/10.1103/PhysRevE.83.011118
http://dx.doi.org/10.1103/PhysRevE.83.011118
http://dx.doi.org/10.1103/PhysRevE.83.011118
http://dx.doi.org/10.1103/PhysRevE.83.011118
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1007/BF01614153
http://dx.doi.org/10.1007/BF01614153
http://dx.doi.org/10.1007/BF01614153
http://dx.doi.org/10.1007/BF01614153



